Find the equation of the plane through the line of intersection of the planes
x+y+z=1 and 2x+3y+4z=5 which is perpendicular to the plane x-y+z= 0
The equation of the plane through the intersection of the planes,
x+y+z=1 and 2x+3y+4z=5, is
(x+y+z-1)+λ(2x+3y+4z-5)=0
\(\Rightarrow\) (2\(\lambda\)+1)x+(3\(\lambda\)+1)y+(4\(\lambda\)+1)z-(5\(\lambda\)+1)=0...(1)
The direction ratios, a1, b1, c1 of this plane are (2\(\lambda\)+1), (3\(\lambda\)+1), and (4\(\lambda\)+1).
The plane in equation(1)is perpendicular to x-y+z=0
Its direction ratios, a2, b2, c2, are 1, -1, and 1.
Since the planes are perpendicular, a1a2+b1b2+c1c2=0
\(\Rightarrow\) (2\(\lambda\)+1)-(3\(\lambda\)+1)+(4\(\lambda\)+1)=0
\(\Rightarrow \) 3\(\lambda\)+1=0
\(\Rightarrow\) \(\lambda\)=-\(\frac{1}{3}\)
Substituting \(\lambda\) =-\(\frac{1}{3}\) in equation (1), we obtain
\(\frac{1}{3}x-\frac{1}{3}z+\frac{2}{3}=0\)
\(\Rightarrow\) x-z+2=0
This is the required equation of the plane.
List - I | List - II | ||
(P) | γ equals | (1) | \(-\hat{i}-\hat{j}+\hat{k}\) |
(Q) | A possible choice for \(\hat{n}\) is | (2) | \(\sqrt{\frac{3}{2}}\) |
(R) | \(\overrightarrow{OR_1}\) equals | (3) | 1 |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) is | (4) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(5) | \(\sqrt{\frac{2}{3}}\) |
Let \(\alpha x+\beta y+y z=1\) be the equation of a plane passing through the point\((3,-2,5)\)and perpendicular to the line joining the points \((1,2,3)\) and \((-2,3,5)\) Then the value of \(\alpha \beta y\)is equal to ____
What is the Planning Process?
A surface comprising all the straight lines that join any two points lying on it is called a plane in geometry. A plane is defined through any of the following uniquely: