Find the equation of the plane passing through the line of intersection of the planes \(\vec r.(\hat i+\hat j+\hat k)=1 \) and \(\vec r.(2\hat i+3\hat j-\hat k)+4=0\) and parallel to x-axis.
The given planes are
\(\vec r.(\hat i+\hat j+\hat k)=1\)
⇒\(\vec r.(\hat i+\hat j+\hat k)-1=0\)
\(\vec r.(2\hat i+3\hat j-\hat k)+4=0\)
The equation of any plane passing through the intersection of these planes is
\([\vec r.(\hat i+\hat j+\hat k)-1]\) + \(λ\)\([\vec r.(2\hat i+3\hat j-\hat k)+4]\) \(= 0\)
\(\vec r.[(2λ+1)\hat i+(3λ+1)\hat j+(1-λ)\hat k]+(4λ+1)=0\) ...(1)
Its direction ratios are (2λ+1), (3λ+1) and (1-λ).
The required plane is parallel to x-axis.
Therefore, its normal is perpendicular to x-axis.
The direction ratios of x-axis are 1, 0 and 0.
\(∴1.(2+λ+1)+0(3λ+1)+0(1-λ)=0\)
⇒ \(2λ+1=0 ⇒ λ=-\frac 12\)
Substituting, \(λ=-\frac 12\) in equation (1), we obtain
⇒\(\vec r.[-\frac 12\hat j+\frac 32\hat k]+(-3)=0\)
⇒\(\vec r.(\hat j-3\hat k)+6=0\)
Therefore, its cartesian equation is \(y-3z+6=0\)
This is the equation of the required plane.
Show that the following lines intersect. Also, find their point of intersection:
Line 1: \[ \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} \]
Line 2: \[ \frac{x - 4}{5} = \frac{y - 1}{2} = z \]
The vector equations of two lines are given as:
Line 1: \[ \vec{r}_1 = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(4\hat{i} + 6\hat{j} + 12\hat{k}) \]
Line 2: \[ \vec{r}_2 = 3\hat{i} + 3\hat{j} - 5\hat{k} + \mu(6\hat{i} + 9\hat{j} + 18\hat{k}) \]
Determine whether the lines are parallel, intersecting, skew, or coincident. If they are not coincident, find the shortest distance between them.
Determine the vector equation of the line that passes through the point \( (1, 2, -3) \) and is perpendicular to both of the following lines:
\[ \frac{x - 8}{3} = \frac{y + 16}{7} = \frac{z - 10}{-16} \quad \text{and} \quad \frac{x - 15}{3} = \frac{y - 29}{-8} = \frac{z - 5}{-5} \]