Find the equation of the plane passing through the line of intersection of the planes \(\vec r.(\hat i+\hat j+\hat k)=1 \) and \(\vec r.(2\hat i+3\hat j-\hat k)+4=0\) and parallel to x-axis.
The given planes are
\(\vec r.(\hat i+\hat j+\hat k)=1\)
⇒\(\vec r.(\hat i+\hat j+\hat k)-1=0\)
\(\vec r.(2\hat i+3\hat j-\hat k)+4=0\)
The equation of any plane passing through the intersection of these planes is
\([\vec r.(\hat i+\hat j+\hat k)-1]\) + \(λ\)\([\vec r.(2\hat i+3\hat j-\hat k)+4]\) \(= 0\)
\(\vec r.[(2λ+1)\hat i+(3λ+1)\hat j+(1-λ)\hat k]+(4λ+1)=0\) ...(1)
Its direction ratios are (2λ+1), (3λ+1) and (1-λ).
The required plane is parallel to x-axis.
Therefore, its normal is perpendicular to x-axis.
The direction ratios of x-axis are 1, 0 and 0.
\(∴1.(2+λ+1)+0(3λ+1)+0(1-λ)=0\)
⇒ \(2λ+1=0 ⇒ λ=-\frac 12\)
Substituting, \(λ=-\frac 12\) in equation (1), we obtain
⇒\(\vec r.[-\frac 12\hat j+\frac 32\hat k]+(-3)=0\)
⇒\(\vec r.(\hat j-3\hat k)+6=0\)
Therefore, its cartesian equation is \(y-3z+6=0\)
This is the equation of the required plane.
List - I | List - II | ||
(P) | γ equals | (1) | \(-\hat{i}-\hat{j}+\hat{k}\) |
(Q) | A possible choice for \(\hat{n}\) is | (2) | \(\sqrt{\frac{3}{2}}\) |
(R) | \(\overrightarrow{OR_1}\) equals | (3) | 1 |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) is | (4) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(5) | \(\sqrt{\frac{2}{3}}\) |
A compound (A) with molecular formula $C_4H_9I$ which is a primary alkyl halide, reacts with alcoholic KOH to give compound (B). Compound (B) reacts with HI to give (C) which is an isomer of (A). When (A) reacts with Na metal in the presence of dry ether, it gives a compound (D), C8H18, which is different from the compound formed when n-butyl iodide reacts with sodium. Write the structures of A, (B), (C) and (D) when (A) reacts with alcoholic KOH.