Find the equation of the line that passes through the point(1,2,3)and is parallel to the vector 3\(\hat i\)+2\(\hat j\)-2\(\hat k\).
It is given that the line passes through the point A(1,2,3).
Therefore, the position vector through A is
\(\vec a\)=\(\hat i\)+2\(\hat j\)+3\(\hat k\), \(\vec b\)=3\(\hat i\)+2\(\hat j\)-2\(\hat k\)
It is known that the line that passes through point A and is parallel to \(\vec b\) is given by \(\vec r\)=\(\vec a\)+λ\(\vec b\), where λ is a constant.
⇒\(\hat i\)+2\(\hat j\)+3\(\hat k\)+λ+(3\(\hat i\)+2\(\hat j\)-2\(\hat k\))
This is the required equation of the line.
Let the lines $L_1 : \vec r = \hat i + 2\hat j + 3\hat k + \lambda(2\hat i + 3\hat j + 4\hat k)$, $\lambda \in \mathbb{R}$ and $L_2 : \vec r = (4\hat i + \hat j) + \mu(5\hat i + + 2\hat j + \hat k)$, $\mu \in \mathbb{R}$ intersect at the point $R$. Let $P$ and $Q$ be the points lying on lines $L_1$ and $L_2$, respectively, such that $|PR|=\sqrt{29}$ and $|PQ|=\sqrt{\frac{47}{3}}$. If the point $P$ lies in the first octant, then $27(QR)^2$ is equal to}

A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (b) If the foot of the ladder, whose length is 5 m, is being pulled towards the wall such that the rate of decrease of distance \( y \) is \( 2 \, \text{m/s} \), then at what rate is the height on the wall \( x \) increasing when the foot of the ladder is 3 m away from the wall?
In a plane, the equation of a line is given by the popular equation y = m x + C. Let's look at how the equation of a line is written in vector form and Cartesian form.
Consider a line that passes through a given point, say ‘A’, and the line is parallel to a given vector '\(\vec{b}\)‘. Here, the line ’l' is given to pass through ‘A’, whose position vector is given by '\(\vec{a}\)‘. Now, consider another arbitrary point ’P' on the given line, where the position vector of 'P' is given by '\(\vec{r}\)'.
\(\vec{AP}\)=𝜆\(\vec{b}\)
Also, we can write vector AP in the following manner:
\(\vec{AP}\)=\(\vec{OP}\)–\(\vec{OA}\)
𝜆\(\vec{b}\) =\(\vec{r}\)–\(\vec{a}\)
\(\vec{a}\)=\(\vec{a}\)+𝜆\(\vec{b}\)
\(\vec{b}\)=𝑏1\(\hat{i}\)+𝑏2\(\hat{j}\) +𝑏3\(\hat{k}\)