Find the equation of the line that passes through the point(1,2,3)and is parallel to the vector 3\(\hat i\)+2\(\hat j\)-2\(\hat k\).
It is given that the line passes through the point A(1,2,3).
Therefore, the position vector through A is
\(\vec a\)=\(\hat i\)+2\(\hat j\)+3\(\hat k\), \(\vec b\)=3\(\hat i\)+2\(\hat j\)-2\(\hat k\)
It is known that the line that passes through point A and is parallel to \(\vec b\) is given by \(\vec r\)=\(\vec a\)+λ\(\vec b\), where λ is a constant.
⇒\(\hat i\)+2\(\hat j\)+3\(\hat k\)+λ+(3\(\hat i\)+2\(\hat j\)-2\(\hat k\))
This is the required equation of the line.
The vector equations of two lines are given as:
Line 1: \[ \vec{r}_1 = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(4\hat{i} + 6\hat{j} + 12\hat{k}) \]
Line 2: \[ \vec{r}_2 = 3\hat{i} + 3\hat{j} - 5\hat{k} + \mu(6\hat{i} + 9\hat{j} + 18\hat{k}) \]
Determine whether the lines are parallel, intersecting, skew, or coincident. If they are not coincident, find the shortest distance between them.
Show that the following lines intersect. Also, find their point of intersection:
Line 1: \[ \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} \]
Line 2: \[ \frac{x - 4}{5} = \frac{y - 1}{2} = z \]
Determine the vector equation of the line that passes through the point \( (1, 2, -3) \) and is perpendicular to both of the following lines:
\[ \frac{x - 8}{3} = \frac{y + 16}{7} = \frac{z - 10}{-16} \quad \text{and} \quad \frac{x - 15}{3} = \frac{y - 29}{-8} = \frac{z - 5}{-5} \]
Draw a rough sketch for the curve $y = 2 + |x + 1|$. Using integration, find the area of the region bounded by the curve $y = 2 + |x + 1|$, $x = -4$, $x = 3$, and $y = 0$.
A school is organizing a debate competition with participants as speakers and judges. $ S = \{S_1, S_2, S_3, S_4\} $ where $ S = \{S_1, S_2, S_3, S_4\} $ represents the set of speakers. The judges are represented by the set: $ J = \{J_1, J_2, J_3\} $ where $ J = \{J_1, J_2, J_3\} $ represents the set of judges. Each speaker can be assigned only one judge. Let $ R $ be a relation from set $ S $ to $ J $ defined as: $ R = \{(x, y) : \text{speaker } x \text{ is judged by judge } y, x \in S, y \in J\} $.
In a plane, the equation of a line is given by the popular equation y = m x + C. Let's look at how the equation of a line is written in vector form and Cartesian form.
Consider a line that passes through a given point, say ‘A’, and the line is parallel to a given vector '\(\vec{b}\)‘. Here, the line ’l' is given to pass through ‘A’, whose position vector is given by '\(\vec{a}\)‘. Now, consider another arbitrary point ’P' on the given line, where the position vector of 'P' is given by '\(\vec{r}\)'.
\(\vec{AP}\)=𝜆\(\vec{b}\)
Also, we can write vector AP in the following manner:
\(\vec{AP}\)=\(\vec{OP}\)–\(\vec{OA}\)
𝜆\(\vec{b}\) =\(\vec{r}\)–\(\vec{a}\)
\(\vec{a}\)=\(\vec{a}\)+𝜆\(\vec{b}\)
\(\vec{b}\)=𝑏1\(\hat{i}\)+𝑏2\(\hat{j}\) +𝑏3\(\hat{k}\)