If $$ f(x) = \begin{cases} \frac{6x^2 + 1}{4x^3 + 2x + 3}, & 0 < x < 1 \\ x^2 + 1, & 1 \leq x < 2 \end{cases} $$ then $$ \int_{0}^{2} f(x) \,dx = ? $$
If the curves $$ 2x^2 + ky^2 = 30 \quad \text{and} \quad 3y^2 = 28x $$ cut each other orthogonally, then \( k = \)