The relationship between the standard Gibbs free energy change (\(\Delta G^\circ\)) and the standard cell potential (\(E^\circ\)) is given by the equation:
\[
\Delta G^\circ = -nFE^\circ
\]
where:
- \(\Delta G^\circ\) is the standard Gibbs free energy change (in Joules)
- \(n\) is the number of moles of electrons transferred in the reaction
- \(F\) is Faraday's constant (\(96500 \, \text{C/mol}\))
- \(E^\circ\) is the standard cell potential (in Volts)
Given values:
- \(\Delta G^\circ = -301 \, \text{kJ/mol} = -301 \times 10^3 \, \text{J/mol}\)
- \(F = 96500 \, \text{C/mol}\)
- \(n = 2\)
Step 1: Solve for \(E^\circ\)
Rearranging the equation:
\[
E^\circ = -\frac{\Delta G^\circ}{nF}
\]
Step 2: Substituting the given values:
\[
E^\circ = -\frac{-301 \times 10^3 \, \text{J/mol}}{2 \times 96500 \, \text{C/mol}}
\]
\[
E^\circ = \frac{301 \times 10^3}{2 \times 96500} \, \text{V}
\]
\[
E^\circ = \frac{301000}{193000} \, \text{V}
\]
\[
E^\circ = \frac{3010}{1930} \, \text{V}
\]
\[
E^\circ = \frac{301}{193} \, \text{V}
\]
\[
E^\circ \approx 1.559585... \, \text{V}
\]
Step 3: Rounding to two decimal places:
\[
E^\circ \approx 1.56 \, \text{V}
\]
Correct Answer: (4) 1.56