The ionization constant of the conjugate acid \( {HA} \) can be found using the relation: \[ K_a \cdot K_b = K_w \] Where: - \( K_a \) is the ionization constant of the conjugate acid, - \( K_b \) is the ionization constant of \( {CN}^- \), - \( K_w = 10^{-14} \) is the ionization constant of water. Given that \( K_b = 2.08 \times 10^{-6} \), we can solve for \( K_a \): \[ K_a = \frac{K_w}{K_b} = \frac{10^{-14}}{2.08 \times 10^{-6}} = 4.8 \times 10^{-10} \] Thus, the ionization constant of the conjugate acid is \( 4.8 \times 10^{-10} \).
Final Answer: \( 4.8 \times 10^{-10} \).
Given below are some nitrogen containing compounds:
Each of them is treated with HCl separately. 1.0 g of the most basic compound will consume ...... mg of HCl.
(Given Molar mass in g mol\(^{-1}\): C = 12, H = 1, O = 16, Cl = 35.5.)

Given below are some nitrogen containing compounds:
Each of them is treated with HCl separately. 1.0 g of the most basic compound will consume ...... mg of HCl.
(Given Molar mass in g mol\(^{-1}\): C = 12, H = 1, O = 16, Cl = 35.5.)

Match the following with their pKa values 
At T(K), the value of \( K_c \) for the reaction
\[ AO_2(g) + BO_2(g) \leftrightarrow{} AO_3(g) + BO(g) \] is 16. In a one-litre closed flask, 1 mole each of \( AO_2(g) \), \( BO_2(g) \), \( AO(g) \), and \( BO(g) \) were taken and heated to T(K).
What are the equilibrium concentrations (in mol L\(^{-1}\)) of \( BO_2(g) \) and \( BO(g) \) respectively?
At equilibrium for the reaction $ A_2 (g) + B_2 (g) \rightleftharpoons 2AB (g) $, the concentrations of $ A_2 $, $ B_2 $, and $ AB $ respectively are $ 1.5 \times 10^{-3} M $, $ 2.1 \times 10^{-3} M $, and $ 1.4 \times 10^{-3} M $. What will be $ K_p $ for the decomposition of $ AB $ at the same temperature?
The molar heats of fusion and vaporization of benzene are 10.9 and 31.0 kJ mol\(^{-1}\) respectively. The changes in entropy for the solid \(\rightarrow\) liquid and liquid \(\rightarrow\) vapor transitions for benzene are \(x\) and \(y\) J K\(^{-1}\) mol\(^{-1}\) respectively. The value of \(y(x)\) in J\(^2\) K\(^{-2}\) mol\(^{-2}\) is: