Question:

Evaluate the definite integral: \( \int_{-2}^{2} |x^2 - x - 2| \, dx \)

Show Hint

For definite integrals involving modulus functions, always split the integral at the points where the expression inside the modulus changes sign.
Updated On: Apr 21, 2025
  • \( \frac{40}{3} \)
  • \( \frac{28}{3} \)
  • \( \frac{36}{5} \)
  • \( \frac{44}{3} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation


Let us analyze the expression inside the modulus: \[ f(x) = x^2 - x - 2 = (x - 2)(x + 1) \] So, the sign of \( f(x) \) changes at \( x = -1 \) and \( x = 2 \). On the interval \([-2, 2]\), break into regions: 1. \( x \in [-2, -1] \Rightarrow f(x) > 0 \) \ 2. \( x \in [-1, 2] \Rightarrow f(x) < 0 \) So: \[ \int_{-2}^{2} |x^2 - x - 2| dx = \int_{-2}^{-1} (x^2 - x - 2) dx - \int_{-1}^{2} (x^2 - x - 2) dx \] Now compute both integrals: \[ \int_{-2}^{-1} (x^2 - x - 2) dx = \left[ \frac{x^3}{3} - \frac{x^2}{2} - 2x \right]_{-2}^{-1} = \left( \frac{-1}{3} - \frac{1}{2} + 2 \right) - \left( \frac{-8}{3} - 2 - (-4) \right) = \frac{13}{6} \] \[ \int_{-1}^{2} -(x^2 - x - 2) dx = \int_{-1}^{2} (-x^2 + x + 2) dx = \left[ -\frac{x^3}{3} + \frac{x^2}{2} + 2x \right]_{-1}^{2} = \frac{27}{6} = \frac{9}{2} \] Now add both: \[ \frac{13}{6} + \frac{27}{6} = \frac{40}{3} \]
Was this answer helpful?
0
0