We are given the function:
\(y(x) = \int \frac{\csc x + \sin x}{\csc x \sec x + \tan x \sin^2 x} \, dx\)
and a condition:
\(\lim_{x \to -\frac{\pi}{2}} y(x) = 0\)
We need to find \(y\left(\frac{\pi}{4}\right)\).
Let's first simplify the integrand:
The integrand is:
\(\frac{\csc x + \sin x}{\csc x \sec x + \tan x \sin^2 x}\)
Rewrite the trigonometric functions:
Substitute these into the integrand:
\(\frac{\frac{1}{\sin x} + \sin x}{\frac{1}{\sin x} \cdot \frac{1}{\cos x} + \frac{\sin x}{\cos x} \cdot \sin^2 x}\)
Simplify the expression:
\(\frac{\frac{1}{\sin x} + \sin x}{\frac{1 + \sin^3 x}{\sin x \cos x}}\)
\(= \frac{\sin x (\csc x + \sin x)}{1 + \sin^3 x}\)
Since \(\csc x + \sin x = \frac{1}{\sin x} + \sin x\) and it simplifies to:
\(y(x) = \int \frac{1 + \sin^2 x}{1 + \sin^3 x} \, dx\)
Let's evaluate the limit \(x \to -\frac{\pi}{2}\) where \(y(x) = 0\). Recognize that this indicates a boundary condition for the integral at \(-\frac{\pi}{2}\):
Evaluating \(y\left(\frac{\pi}{4}\right)\) from \(-\frac{\pi}{2}\) to \(\frac{\pi}{4}\) with the above steps and simplification leads to the result:
After correct substitutions and simplifications, this evaluates to \(\frac{1}{\sqrt{2}} \tan^{-1}\left(-\frac{1}{2}\right)\).
Thus, the correct answer is:
Option: \(\frac{1}{\sqrt{2}} \tan^{-1} \left( -\frac{1}{2} \right)\)
Simplify the Integrand: - Rewrite the integrand as:
\(y(x) = \int \frac{(1 + \sin^2 x) \cos x}{1 + \sin^4 x} \, dx\)
- Let \( \sin x = t \), so \( \cos x \, dx = dt \).
Substitute and Integrate: - Substituting \( \sin x = t \), we get:
\(y(x) = \int \frac{1 + t^2}{t^4 + 1} \, dt = \frac{1}{\sqrt{2}} \tan^{-1} \left( t - \frac{1}{\sqrt{2}} \right) + C\)
Determine the Constant \( C \): - At \( x = \frac{\pi}{4} \), \( t = \frac{1}{\sqrt{2}} \). - Since \( \lim_{x \to -\frac{\pi}{2}} y(x) = 0 \), we find \( C = 0 \).
Calculate \( y \left( \frac{\pi}{4} \right) \): - For \( x = \frac{\pi}{4} \), \( t = \frac{1}{\sqrt{2}} \). - Thus:
\(y \left( \frac{\pi}{4} \right) = \frac{1}{\sqrt{2}} \tan^{-1} \left( -\frac{1}{2} \right)\)
So, the correct answer is: \( \frac{1}{\sqrt{2}} \tan^{-1} \left( -\frac{1}{2} \right) \)
The value \( 9 \int_{0}^{9} \left\lfloor \frac{10x}{x+1} \right\rfloor \, dx \), where \( \left\lfloor t \right\rfloor \) denotes the greatest integer less than or equal to \( t \), is ________.
If the value of the integral
\[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \frac{x^2 \cos x}{1 + \pi^x} + \frac{1 + \sin^2 x}{1 + e^{\sin^x 2023}} \right) dx = \frac{\pi}{4} (\pi + a) - 2, \]
then the value of \(a\) is: