Simplify the Integrand: - Rewrite the integrand as:
\(y(x) = \int \frac{(1 + \sin^2 x) \cos x}{1 + \sin^4 x} \, dx\)
- Let \( \sin x = t \), so \( \cos x \, dx = dt \).
Substitute and Integrate: - Substituting \( \sin x = t \), we get:
\(y(x) = \int \frac{1 + t^2}{t^4 + 1} \, dt = \frac{1}{\sqrt{2}} \tan^{-1} \left( t - \frac{1}{\sqrt{2}} \right) + C\)
Determine the Constant \( C \): - At \( x = \frac{\pi}{4} \), \( t = \frac{1}{\sqrt{2}} \). - Since \( \lim_{x \to -\frac{\pi}{2}} y(x) = 0 \), we find \( C = 0 \).
Calculate \( y \left( \frac{\pi}{4} \right) \): - For \( x = \frac{\pi}{4} \), \( t = \frac{1}{\sqrt{2}} \). - Thus:
\(y \left( \frac{\pi}{4} \right) = \frac{1}{\sqrt{2}} \tan^{-1} \left( -\frac{1}{2} \right)\)
So, the correct answer is: \( \frac{1}{\sqrt{2}} \tan^{-1} \left( -\frac{1}{2} \right) \)