article amsmath
To solve the limit
\[\lim_{n\to\infty} \sum_{k=1}^n \frac{n^3}{(n^2+k^2)(n^2+3k^2)}\]
we start by rewriting it as a Riemann sum.
Step 1: Rewrite as a Riemann Sum
Rewrite each term in the sum by dividing both terms inside the denominator by \(n^2\):
\[\lim_{n\to\infty} \sum_{k=1}^n \frac{1}{n} \times \frac{1}{\left(1+\left(\frac{k}{n}\right)^2\right)\left(1+3\left(\frac{k}{n}\right)^2\right)}\]
As \(n\to\infty\), the term \(\frac{k}{n}\) behaves like a continuous variable \(x\) on the interval \([0,1]\). Thus, the sum can be approximated by the integral:
\[\int_0^1 \frac{1}{(1+x^2)(1+3x^2)} \,dx\]
Step 2: Simplify the Integral
We now need to evaluate:
\[\int_0^1 \frac{1}{(1+x^2)(1+3x^2)} \,dx\]
Step 3: Use Partial Fraction Decomposition
To simplify this integral, we can use partial fraction decomposition. We assume that:
\[\frac{1}{(1+x^2)(1+3x^2)} = \frac{A}{1+x^2} + \frac{B}{1+3x^2}\]
Multiplying both sides by \((1+x^2)(1+3x^2)\) gives:
\[1 = A(1+3x^2) + B(1+x^2)\]
Expanding and combining terms, we get:
\[1 = (A+B) + (3A+B)x^2\]
Solving this system:
From \(A+B=1\), we get \(B=1-A\).
Substitute \(B=1-A\) in \(3A+B=0\):
\[3A+(1-A)=0 \Rightarrow 2A=-1 \Rightarrow A=\frac{-1}{3}\]
Substitute \(A=\frac{-1}{3}\) into \(B=1-A\):
\[B=1-\frac{-1}{3}=\frac{1}{3}\]
Thus, we have:
\[\frac{1}{(1+x^2)(1+3x^2)}=\frac{1}{3}\frac{1}{1+x^2}-\frac{1}{3}\frac{1}{1+3x^2}\]
Step 4: Rewrite the Integral
Now the integral becomes:
\[\int_0^1 \frac{1}{(1+x^2)(1+3x^2)} \,dx = \frac{1}{3} \int_0^1 \frac{1}{1+x^2} \,dx - \frac{1}{3} \int_0^1 \frac{1}{1+3x^2} \,dx\]
Step 5: Evaluate Each Integral Separately
Step 6: Combine the Results
Now, substitute back into the integral:
\[\int_0^1 \frac{1}{(1+x^2)(1+3x^2)} \,dx = \frac{1}{3} \times \frac{\pi}{4} - \frac{1}{3} \times \frac{\pi}{3\sqrt{3}}\]
\[= \frac{\pi}{12} - \frac{\pi}{9\sqrt{3}} = \frac{13\pi}{8(4\sqrt{3}+3)}\]