The problem is to evaluate the limit of a sum, which can be converted into a definite integral.
\[ L = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{n^3}{\left( n^2 + k^2 \right)\left( n^2 + 3k^2 \right)} \]The limit of a sum can be expressed as a definite integral using the formula for a Riemann sum:
\[ \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) = \int_{0}^{1} f(x) \, dx \]To evaluate the resulting integral, we will use the method of partial fraction decomposition and the standard integration formula:
\[ \int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \arctan\left(\frac{x}{a}\right) + C \]Step 1: Convert the given limit of a sum into a definite integral.
We need to manipulate the general term of the sum to fit the form \( \frac{1}{n} f\left(\frac{k}{n}\right) \).
\[ \frac{n^3}{\left( n^2 + k^2 \right)\left( n^2 + 3k^2 \right)} = \frac{n^3}{n^2\left( 1 + \frac{k^2}{n^2} \right) n^2\left( 1 + 3\frac{k^2}{n^2} \right)} \] \[ = \frac{n^3}{n^4\left( 1 + \left(\frac{k}{n}\right)^2 \right)\left( 1 + 3\left(\frac{k}{n}\right)^2 \right)} = \frac{1}{n} \frac{1}{\left( 1 + \left(\frac{k}{n}\right)^2 \right)\left( 1 + 3\left(\frac{k}{n}\right)^2 \right)} \]Comparing this with the Riemann sum formula, we can identify \( x = \frac{k}{n} \) and \( f(x) = \frac{1}{(1+x^2)(1+3x^2)} \). The limit can be written as the definite integral:
\[ L = \int_{0}^{1} \frac{1}{(1+x^2)(1+3x^2)} \, dx \]Step 2: Use partial fraction decomposition for the integrand.
Let \( y = x^2 \). We decompose the expression \( \frac{1}{(1+y)(1+3y)} \):
\[ \frac{1}{(1+y)(1+3y)} = \frac{A}{1+y} + \frac{B}{1+3y} \]Multiplying by the denominator gives \( 1 = A(1+3y) + B(1+y) \).
If we set \( y = -1 \), we get \( 1 = A(1-3) \implies A = -\frac{1}{2} \).
If we set \( y = -1/3 \), we get \( 1 = B(1 - 1/3) \implies B = \frac{3}{2} \).
Substituting back \( y = x^2 \), the integrand becomes:
\[ \frac{1}{(1+x^2)(1+3x^2)} = \frac{3/2}{1+3x^2} - \frac{1/2}{1+x^2} = \frac{1}{2} \left( \frac{3}{1+3x^2} - \frac{1}{1+x^2} \right) \]Step 3: Evaluate the definite integral.
The integral becomes:
\[ L = \frac{1}{2} \int_{0}^{1} \left( \frac{3}{1+3x^2} - \frac{1}{1+x^2} \right) \, dx \] \[ L = \frac{1}{2} \left[ \int_{0}^{1} \frac{3}{1+(\sqrt{3}x)^2} \, dx - \int_{0}^{1} \frac{1}{1+x^2} \, dx \right] \]We evaluate each integral separately:
\[ \int_{0}^{1} \frac{3}{1+(\sqrt{3}x)^2} \, dx = 3 \left[ \frac{1}{\sqrt{3}} \arctan(\sqrt{3}x) \right]_{0}^{1} = \sqrt{3} (\arctan(\sqrt{3}) - \arctan(0)) = \sqrt{3} \left( \frac{\pi}{3} \right) = \frac{\pi}{\sqrt{3}} \] \[ \int_{0}^{1} \frac{1}{1+x^2} \, dx = [\arctan(x)]_{0}^{1} = \arctan(1) - \arctan(0) = \frac{\pi}{4} \]Step 4: Combine the results to find the value of L.
\[ L = \frac{1}{2} \left[ \frac{\pi}{\sqrt{3}} - \frac{\pi}{4} \right] = \frac{\pi}{2} \left( \frac{4 - \sqrt{3}}{4\sqrt{3}} \right) = \frac{\pi (4 - \sqrt{3})}{8\sqrt{3}} \]To simplify, we rationalize the denominator:
\[ L = \frac{\pi (4 - \sqrt{3})}{8\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{\pi (4\sqrt{3} - 3)}{24} \]The value of the limit is \( \frac{\pi (4\sqrt{3} - 3)}{24} \). We now check which of the given options matches this result. Let's examine option (2):
\[ \frac{13\pi}{8(4\sqrt{3} + 3)} \]Rationalizing the denominator of this option:
\[ \frac{13\pi}{8(4\sqrt{3} + 3)} \times \frac{4\sqrt{3} - 3}{4\sqrt{3} - 3} = \frac{13\pi (4\sqrt{3} - 3)}{8 \left( (4\sqrt{3})^2 - 3^2 \right)} \] \[ = \frac{13\pi (4\sqrt{3} - 3)}{8 (16 \times 3 - 9)} = \frac{13\pi (4\sqrt{3} - 3)}{8 (48 - 9)} = \frac{13\pi (4\sqrt{3} - 3)}{8 \times 39} \]Since \( 39 = 3 \times 13 \), we can simplify the expression:
\[ = \frac{13\pi (4\sqrt{3} - 3)}{8 \times 3 \times 13} = \frac{\pi (4\sqrt{3} - 3)}{24} \]This matches our calculated value for the limit. Thus, the correct option is the second one.
The value of the limit is \( \frac{13\pi}{8(4\sqrt{3} + 3)} \).
\[\lim_{n\to\infty} \sum_{k=1}^n \frac{n^3}{(n^2+k^2)(n^2+3k^2)}\]
we start by rewriting it as a Riemann sum.
Step 1: Rewrite as a Riemann Sum
Rewrite each term in the sum by dividing both terms inside the denominator by \(n^2\):
\[\lim_{n\to\infty} \sum_{k=1}^n \frac{1}{n} \times \frac{1}{\left(1+\left(\frac{k}{n}\right)^2\right)\left(1+3\left(\frac{k}{n}\right)^2\right)}\]
As \(n\to\infty\), the term \(\frac{k}{n}\) behaves like a continuous variable \(x\) on the interval \([0,1]\). Thus, the sum can be approximated by the integral:
\[\int_0^1 \frac{1}{(1+x^2)(1+3x^2)} \,dx\]
Step 2: Simplify the Integral
We now need to evaluate:
\[\int_0^1 \frac{1}{(1+x^2)(1+3x^2)} \,dx\]
Step 3: Use Partial Fraction Decomposition
To simplify this integral, we can use partial fraction decomposition. We assume that:
\[\frac{1}{(1+x^2)(1+3x^2)} = \frac{A}{1+x^2} + \frac{B}{1+3x^2}\]
Multiplying both sides by \((1+x^2)(1+3x^2)\) gives:
\[1 = A(1+3x^2) + B(1+x^2)\]
Expanding and combining terms, we get:
\[1 = (A+B) + (3A+B)x^2\]
Solving this system:
From \(A+B=1\), we get \(B=1-A\).
Substitute \(B=1-A\) in \(3A+B=0\):
\[3A+(1-A)=0 \Rightarrow 2A=-1 \Rightarrow A=\frac{-1}{3}\]
Substitute \(A=\frac{-1}{3}\) into \(B=1-A\):
\[B=1-\frac{-1}{3}=\frac{1}{3}\]
Thus, we have:
\[\frac{1}{(1+x^2)(1+3x^2)}=\frac{1}{3}\frac{1}{1+x^2}-\frac{1}{3}\frac{1}{1+3x^2}\]
Step 4: Rewrite the Integral
Now the integral becomes:
\[\int_0^1 \frac{1}{(1+x^2)(1+3x^2)} \,dx = \frac{1}{3} \int_0^1 \frac{1}{1+x^2} \,dx - \frac{1}{3} \int_0^1 \frac{1}{1+3x^2} \,dx\]
Step 5: Evaluate Each Integral Separately
Step 6: Combine the Results
Now, substitute back into the integral:
\[\int_0^1 \frac{1}{(1+x^2)(1+3x^2)} \,dx = \frac{1}{3} \times \frac{\pi}{4} - \frac{1}{3} \times \frac{\pi}{3\sqrt{3}}\]
\[= \frac{\pi}{12} - \frac{\pi}{9\sqrt{3}} = \frac{13\pi}{8(4\sqrt{3}+3)}\]
The value \( 9 \int_{0}^{9} \left\lfloor \frac{10x}{x+1} \right\rfloor \, dx \), where \( \left\lfloor t \right\rfloor \) denotes the greatest integer less than or equal to \( t \), is ________.
If the value of the integral
\[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \frac{x^2 \cos x}{1 + \pi^x} + \frac{1 + \sin^2 x}{1 + e^{\sin^x 2023}} \right) dx = \frac{\pi}{4} (\pi + a) - 2, \]
then the value of \(a\) is:
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
The effect of temperature on the spontaneity of reactions are represented as: Which of the following is correct?
