We are given the integral: \[ I = \int_{\frac{\pi}{5}}^{\frac{3\pi}{10}} \frac{\sqrt{\tan x}}{1 + \sqrt{\tan x}} \, dx \] To simplify this integral, let us perform the substitution \( t = \tan x \).
Therefore: \[ dt = \sec^2 x \, dx \quad {or} \quad dx = \frac{dt}{\sec^2 x} \] Now, the limits of integration change with the substitution. When \( x = \frac{\pi}{5} \), we get \( t = \tan \frac{\pi}{5} \). When \( x = \frac{3\pi}{10} \), we get \( t = \tan \frac{3\pi}{10} \). Thus, the integral becomes: \[ I = \int_{\tan \frac{\pi}{5}}^{\tan \frac{3\pi}{10}} \frac{\sqrt{t}}{1 + \sqrt{t}} \cdot \frac{dt}{1+t} \] This is a standard form of a trigonometric integral, and after evaluating the integral (using known integrals or a suitable technique), we get: \[ I = \frac{\pi}{20} \] Thus, the value of the integral is \( \frac{\pi}{20} \).
Thus, the correct answer is option (D), \( \frac{\pi}{20} \).
\[ \int \frac{4x \cos \left( \sqrt{4x^2 + 7} \right)}{\sqrt{4x^2 + 7}} \, dx \]
\[ f(x) = \begin{cases} x\left( \frac{\pi}{2} + x \right), & \text{if } x \geq 0 \\ x\left( \frac{\pi}{2} - x \right), & \text{if } x < 0 \end{cases} \]
Then \( f'(-4) \) is equal to:If \( f'(x) = 4x\cos^2(x) \sin\left(\frac{x}{4}\right) \), then \( \lim_{x \to 0} \frac{f(\pi + x) - f(\pi)}{x} \) is equal to:
Let \( f(x) = \frac{x^2 + 40}{7x} \), \( x \neq 0 \), \( x \in [4,5] \). The value of \( c \) in \( [4,5] \) at which \( f'(c) = -\frac{1}{7} \) is equal to:
The general solution of the differential equation \( \frac{dy}{dx} = xy - 2x - 2y + 4 \) is:
\[ \int \left( \frac{\log_e t}{1+t} + \frac{\log_e t}{t(1+t)} \right) dt \]