The given function is: \[ f(x) = \ln(x^2 + 1). \]
To find the second derivative, we first compute the first derivative using the chain rule: \[ f'(x) = \frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}. \]
Now, taking the derivative of \( f'(x) \) to get the second derivative: \[ f''(x) = \frac{d}{dx} \left( \frac{2x}{x^2 + 1} \right). \]
We use the quotient rule: \[ f''(x) = \frac{(x^2 + 1)(2) - 2x(2x)}{(x^2 + 1)^2} = \frac{2(x^2 + 1) - 4x^2}{(x^2 + 1)^2} = \frac{2 - 2x^2}{(x^2 + 1)^2}. \]
Thus, the second derivative is: \[ f''(x) = \frac{2x}{(x^2 + 1)^2}. \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.