The given function is: \[ f(x) = \ln(x^2 + 1). \]
To find the second derivative, we first compute the first derivative using the chain rule: \[ f'(x) = \frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}. \]
Now, taking the derivative of \( f'(x) \) to get the second derivative: \[ f''(x) = \frac{d}{dx} \left( \frac{2x}{x^2 + 1} \right). \]
We use the quotient rule: \[ f''(x) = \frac{(x^2 + 1)(2) - 2x(2x)}{(x^2 + 1)^2} = \frac{2(x^2 + 1) - 4x^2}{(x^2 + 1)^2} = \frac{2 - 2x^2}{(x^2 + 1)^2}. \]
Thus, the second derivative is: \[ f''(x) = \frac{2x}{(x^2 + 1)^2}. \]
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).