The given function is: \[ f(x) = \ln(x^2 + 1). \]
To find the second derivative, we first compute the first derivative using the chain rule: \[ f'(x) = \frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}. \]
Now, taking the derivative of \( f'(x) \) to get the second derivative: \[ f''(x) = \frac{d}{dx} \left( \frac{2x}{x^2 + 1} \right). \]
We use the quotient rule: \[ f''(x) = \frac{(x^2 + 1)(2) - 2x(2x)}{(x^2 + 1)^2} = \frac{2(x^2 + 1) - 4x^2}{(x^2 + 1)^2} = \frac{2 - 2x^2}{(x^2 + 1)^2}. \]
Thus, the second derivative is: \[ f''(x) = \frac{2x}{(x^2 + 1)^2}. \]
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: