The given function is: \[ f(x) = \ln(x^2 + 1). \]
To find the second derivative, we first compute the first derivative using the chain rule: \[ f'(x) = \frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}. \]
Now, taking the derivative of \( f'(x) \) to get the second derivative: \[ f''(x) = \frac{d}{dx} \left( \frac{2x}{x^2 + 1} \right). \]
We use the quotient rule: \[ f''(x) = \frac{(x^2 + 1)(2) - 2x(2x)}{(x^2 + 1)^2} = \frac{2(x^2 + 1) - 4x^2}{(x^2 + 1)^2} = \frac{2 - 2x^2}{(x^2 + 1)^2}. \]
Thus, the second derivative is: \[ f''(x) = \frac{2x}{(x^2 + 1)^2}. \]
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.