The given function is: \[ f(x) = \ln(x^2 + 1). \]
To find the second derivative, we first compute the first derivative using the chain rule: \[ f'(x) = \frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}. \]
Now, taking the derivative of \( f'(x) \) to get the second derivative: \[ f''(x) = \frac{d}{dx} \left( \frac{2x}{x^2 + 1} \right). \]
We use the quotient rule: \[ f''(x) = \frac{(x^2 + 1)(2) - 2x(2x)}{(x^2 + 1)^2} = \frac{2(x^2 + 1) - 4x^2}{(x^2 + 1)^2} = \frac{2 - 2x^2}{(x^2 + 1)^2}. \]
Thus, the second derivative is: \[ f''(x) = \frac{2x}{(x^2 + 1)^2}. \]
Electrolysis of 600 mL aqueous solution of NaCl for 5 min changes the pH of the solution to 12. The current in Amperes used for the given electrolysis is ….. (Nearest integer).
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}