We are tasked with evaluating the integral: \[ \int e^{x + \frac{1}{x}} \frac{x^2 - 1}{x^2} \, dx \] First, rewrite the integrand: \[ \frac{x^2 - 1}{x^2} = 1 - \frac{1}{x^2} \]
Thus, the integral becomes: \[ \int e^{x + \frac{1}{x}} \left( 1 - \frac{1}{x^2} \right) \, dx \] Now, observe that the expression inside the integral simplifies to the derivative of \( e^{x + \frac{1}{x}} \): \[ \frac{d}{dx} \left( e^{x + \frac{1}{x}} \right) = e^{x + \frac{1}{x}} \left( 1 - \frac{1}{x^2} \right) \] Therefore, the integral simplifies to: \[ \int \frac{d}{dx} \left( e^{x + \frac{1}{x}} \right) \, dx \] Which simply gives: \[ e^{x + \frac{1}{x}} + C \]
Thus, the correct answer is \( e^{x + \frac{1}{x}} \).
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
Evaluate:
\[ I = \int_2^4 \left( |x - 2| + |x - 3| + |x - 4| \right) dx \]