We are tasked with evaluating the integral: \[ \int e^{x + \frac{1}{x}} \frac{x^2 - 1}{x^2} \, dx \] First, rewrite the integrand: \[ \frac{x^2 - 1}{x^2} = 1 - \frac{1}{x^2} \]
Thus, the integral becomes: \[ \int e^{x + \frac{1}{x}} \left( 1 - \frac{1}{x^2} \right) \, dx \] Now, observe that the expression inside the integral simplifies to the derivative of \( e^{x + \frac{1}{x}} \): \[ \frac{d}{dx} \left( e^{x + \frac{1}{x}} \right) = e^{x + \frac{1}{x}} \left( 1 - \frac{1}{x^2} \right) \] Therefore, the integral simplifies to: \[ \int \frac{d}{dx} \left( e^{x + \frac{1}{x}} \right) \, dx \] Which simply gives: \[ e^{x + \frac{1}{x}} + C \]
Thus, the correct answer is \( e^{x + \frac{1}{x}} \).
If, \( I_n = \int_{-\pi}^{\pi} \frac{\cos(nx)(1+2^x)}{dx} \), where \( n = 0, 1, 2, \dots \), then which of the following are correct?
A. \( I_n = I_{n+2} \), for all \( n = 0, 1, 2, \dots \)
B. \( I_n = 0 \), for all \( n = 0, 1, 2, \dots \)
C. \( \sum_{n=1}^{10} I_n = 2^{10} \)
D. \( \sum_{n=1}^{10} I_n = 0 \)