We are tasked with evaluating the integral: \[ \int e^{x + \frac{1}{x}} \frac{x^2 - 1}{x^2} \, dx \] First, rewrite the integrand: \[ \frac{x^2 - 1}{x^2} = 1 - \frac{1}{x^2} \]
Thus, the integral becomes: \[ \int e^{x + \frac{1}{x}} \left( 1 - \frac{1}{x^2} \right) \, dx \] Now, observe that the expression inside the integral simplifies to the derivative of \( e^{x + \frac{1}{x}} \): \[ \frac{d}{dx} \left( e^{x + \frac{1}{x}} \right) = e^{x + \frac{1}{x}} \left( 1 - \frac{1}{x^2} \right) \] Therefore, the integral simplifies to: \[ \int \frac{d}{dx} \left( e^{x + \frac{1}{x}} \right) \, dx \] Which simply gives: \[ e^{x + \frac{1}{x}} + C \]
Thus, the correct answer is \( e^{x + \frac{1}{x}} \).
Let \[ f(t)=\int \left(\frac{1-\sin(\log_e t)}{1-\cos(\log_e t)}\right)dt,\; t>1. \] If $f(e^{\pi/2})=-e^{\pi/2}$ and $f(e^{\pi/4})=\alpha e^{\pi/4}$, then $\alpha$ equals