Step 1: Simplifying the integrand.
We start with the given integral:
\[
I = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} \, dx
\]
By multiplying both the numerator and the denominator by \( \sqrt{\sin x} - \sqrt{\cos x} \), we simplify the expression. This results in:
\[
I = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\cos x} (\sqrt{\sin x} - \sqrt{\cos x})}{(\sin x - \cos x)} \, dx
\]
Step 2: Evaluating the integral.
After further simplification, we can integrate directly. Upon evaluation, we find:
\[
I = \frac{\pi}{6}
\]
Step 3: Conclusion.
Thus, the value of the integral is \( \frac{\pi}{6} \), corresponding to option (B).