>
Exams
>
Mathematics
>
Exponential and Logarithmic Functions
>
if log 2 3 p express log 8 9 in terms of p
Question:
If \( \log_2 3 = p \), express \( \log_8 9 \) in terms of \( p \):
Show Hint
Use change of base: \( \log_b a = \frac{\log a}{\log b} \). Rewrite in terms of known logarithms.
AP EAPCET - 2025
AP EAPCET
Updated On:
Jul 28, 2025
\( \frac{2p}{3} \)
\( \frac{3p}{2} \)
\( \frac{4p}{3} \)
\( \frac{p}{3} \)
Hide Solution
Verified By Collegedunia
The Correct Option is
A
Solution and Explanation
Step 1: Use change of base formula.
\[ \log_8 9 = \frac{\log 9}{\log 8} = \frac{\log(3^2)}{\log(2^3)} = \frac{2\log 3}{3\log 2} \]
Step 2: Express in terms of \( p \).
\[ \log_2 3 = \frac{\log 3}{\log 2} = p \Rightarrow \frac{\log 3}{\log 2} = p \Rightarrow \log_8 9 = \frac{2}{3} \cdot p = \frac{2p}{3} \]
Download Solution in PDF
Was this answer helpful?
1
1
Top Questions on Exponential and Logarithmic Functions
Find the value of \( \log_3 81 \).
MHT CET - 2025
Mathematics
Exponential and Logarithmic Functions
View Solution
Solve for \( x \): \( \log_2 (x-1) = 3 \).
MHT CET - 2025
Mathematics
Exponential and Logarithmic Functions
View Solution
If $f : \mathbb{R}^+ \to \mathbb{R}$ is defined as $f(x) = \log_a x$ where $a>0$ and $a \neq 1$, prove that $f$ is a bijection. (R$^+$ is the set of all positive real numbers.)
CBSE CLASS XII - 2025
Mathematics
Exponential and Logarithmic Functions
View Solution
\( \int \sin^{-1}\left(\frac{x}{\sqrt{a+x}}\right) \, dx = \)
AP EAPCET - 2025
Mathematics
Exponential and Logarithmic Functions
View Solution
Evaluate \[ \int \frac{1}{1 + x^2} \, dx = ? \]
AP EAPCET - 2025
Mathematics
Exponential and Logarithmic Functions
View Solution
View More Questions
Questions Asked in AP EAPCET exam
$\tan\left(\frac{2\pi}{7}\right)\tan\left(\frac{4\pi}{7}\right) + \tan\left(\frac{4\pi}{7}\right)\tan\left(\frac{\pi}{7}\right) + \tan\left(\frac{\pi}{7}\right)\tan\left(\frac{2\pi}{7}\right) =$
AP EAPCET - 2025
Trigonometric Identities
View Solution
Let $ A(4, 3), B(2, 5) $ be two points. If $ P $ is a variable point on the same side of the origin as that of line $ AB $ and at most 5 units from the midpoint of $ AB $, then the locus of $ P $ is:
AP EAPCET - 2025
Coordinate Geometry
View Solution
The equation of the normal drawn at the point \((\sqrt{2}+1, -1)\) to the ellipse \(x^2 + 2y^2 - 2x + 8y + 5 = 0\) is
AP EAPCET - 2025
Geometry
View Solution
The equation \((2p - 3)x^2 + 2pxy - y^2 = 0\) represents a pair of distinct lines
AP EAPCET - 2025
Geometry
View Solution
If \[ A = \begin{bmatrix} a & b & c \\ d & e & f \\ l & m & n \end{bmatrix} \] is a matrix such that $|A|>0$ and \[ Adj(A) = \begin{bmatrix} 0 & 4 & -6 \\ 10 & 8 & 0 \\ 2 & 4 & -4 \end{bmatrix}, \] then find the value of \[ \frac{cd}{fb} + \frac{ln}{em}. \]
AP EAPCET - 2025
Matrices
View Solution
View More Questions