>
Exams
>
Mathematics
>
Calculus
>
evaluate int frac x 2 x 4 1 dx
Question:
Evaluate \( \int \frac{x^2}{x^4+1} dx \).
Show Hint
Remember the identity \( x^2 + \frac{1}{x^2} = (x \pm \frac{1}{x})^2 \mp 2 \). Choosing between \( + \) or \( - \) depends on whether the numerator is \( 1 \mp \frac{1}{x^2} \).
PSEB XII
Updated On:
Jan 22, 2026
Hide Solution
Verified By Collegedunia
Solution and Explanation
Step 1: Understanding the Concept:
This type of integral is solved by rewriting the numerator to split the integral into two standard forms.
Step 2: Detailed Explanation:
Write \( x^2 = \frac{1}{2} [ (x^2 + 1) + (x^2 - 1) ] \).
\[ I = \frac{1}{2} \int \frac{x^2 + 1}{x^4 + 1} dx + \frac{1}{2} \int \frac{x^2 - 1}{x^4 + 1} dx \] Divide both numerator and denominator by \( x^2 \):
\[ I = \frac{1}{2} \int \frac{1 + 1/x^2}{x^2 + 1/x^2} dx + \frac{1}{2} \int \frac{1 - 1/x^2}{x^2 + 1/x^2} dx \] For Part 1: Let \( t = x - 1/x \implies dt = (1 + 1/x^2)dx \). Denominator is \( t^2 + 2 \).
For Part 2: Let \( u = x + 1/x \implies du = (1 - 1/x^2)dx \). Denominator is \( u^2 - 2 \).
\[ I = \frac{1}{2} \int \frac{dt}{t^2 + 2} + \frac{1}{2} \int \frac{du}{u^2 - 2} \] \[ I = \frac{1}{2\sqrt{2}} \tan^{-1}\left(\frac{t}{\sqrt{2}}\right) + \frac{1}{4\sqrt{2}} \log \left| \frac{u-\sqrt{2}}{u+\sqrt{2}} \right| \] Substituting \( t \) and \( u \):
\[ I = \frac{1}{2\sqrt{2}} \tan^{-1}\left(\frac{x^2-1}{x\sqrt{2}}\right) + \frac{1}{4\sqrt{2}} \log \left| \frac{x^2 - \sqrt{2}x + 1}{x^2 + \sqrt{2}x + 1} \right| + C \].
Step 3: Final Answer:
The evaluated integral is \( \frac{1}{2\sqrt{2}} \tan^{-1}\left(\frac{x^2-1}{x\sqrt{2}}\right) + \frac{1}{4\sqrt{2}} \log \left| \frac{x^2 - \sqrt{2}x + 1}{x^2 + \sqrt{2}x + 1} \right| + C \).
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Calculus
Let \[ f(t)=\int_{0}^{t} e^{x^2}\Big((1+2x^2)\sin x+x\cos x\Big)\,dx. \] Then the value of \(f(\pi)-f\!\left(\frac{\pi}{2}\right)\) is equal to:
JEE Main - 2026
Mathematics
Calculus
View Solution
The value of \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{12(3+[x])\,dx}{3+[\sin x]+[\cos x]} \] (where \([\,]\) denotes the greatest integer function) is:
JEE Main - 2026
Mathematics
Calculus
View Solution
Given \[ f(x)=\int \frac{dx}{x^{2/3}+2\sqrt{x}} \quad \text{and} \quad f(0)=-26+24\ln 2. \] If \(f(1)=A+B\ln 3\), then find \((A+B)\).
JEE Main - 2026
Mathematics
Calculus
View Solution
If \[ f(x)=1-2x+\int_{0}^{x} e^{x-t} f(t)\,dt \] and \[ g(x)=\int_{0}^{x} (f(t)+2)^{11}(t+12)^{17}(t-4)^4\,dt, \] If local minima and local maxima of \(g(x)\) occur at \(x=p\) and \(x=q\) respectively, find \(|p|+q\).
JEE Main - 2026
Mathematics
Calculus
View Solution
Consider two parabolas \(P_1,\ P_2\) and a line \(L\):
\[ P_1:\ y=4x^2,\qquad P_2:\ y=x^2+27,\qquad L:\ y=\alpha x \] If the area bounded by \(P_1\) and \(P_2\) is six times the area bounded by \(P_1\) and \(L\), find \(\alpha\).
JEE Main - 2026
Mathematics
Calculus
View Solution
View More Questions
Questions Asked in PSEB exam
If a die is tossed once, then the probability of getting an odd prime number is:
PSEB XII - 2025
Probability
View Solution
Prove that for any two non-zero vectors \( \mathbf{a} \) and \( \mathbf{b} \),
\[ |\mathbf{a} + \mathbf{b}| \leq |\mathbf{a}| + |\mathbf{b}| \]
Also, write the name of this inequality.
PSEB XII - 2025
Inequalities
View Solution
Adjacent sides of a parallelogram are given by
\[ \mathbf{a} = 6 \hat{i} - \hat{j} + 5 \hat{k}, \quad \mathbf{b} = \hat{i} + 5 \hat{j} - 2 \hat{k} \]
Find the area of the parallelogram.
PSEB XII - 2025
Geometry
View Solution
\( \frac{d}{dx} \left( \sin x^2 \right) = 2x \cos x^2 \)
PSEB XII - 2025
Inverse Trigonometric Functions
View Solution
If a matrix \( A \) is symmetric as well as skew-symmetric, then \( A = 0 \).
PSEB XII - 2025
Matrices
View Solution
View More Questions