Step 1: Using a substitution for inverse sine.
Let \( u = \sin^{-1}(x) \), so \( x = \sin(u) \). Differentiating both sides with respect to \( x \), we get:
\[
\frac{dx}{du} = \cos(u) \quad \Rightarrow \quad dx = \cos(u) \, du
\]
Now, substitute into the integral. Since \( x = \sin(u) \), we know that \( 1 + x^2 = 1 + \sin^2(u) = \cos^2(u) \). Thus, the integral becomes:
\[
I = \int \frac{u}{\cos^2(u)} \, du
\]
Step 2: Simplifying the expression.
We now simplify the integrand:
\[
I = \int u \sec^2(u) \, du
\]
To integrate, use integration by parts, where:
\[
\int u \sec^2(u) \, du = u \tan(u) - \int \tan(u) \, du
\]
Step 3: Solving the integral.
The integral of \( \tan(u) \) is \( -\ln|\cos(u)| \), so:
\[
I = u \tan(u) + \ln|\cos(u)| + C
\]
Now, substitute \( u = \sin^{-1}(x) \) back into the result:
\[
I = \sin^{-1}(x) \cdot \frac{x}{\sqrt{1 - x^2}} + \ln|\cos(\sin^{-1}(x))| + C
\]
This is the evaluated integral.