Step 1: Decomposing the integrand.
We use partial fraction decomposition to express \( \frac{3x + 2}{(x^2 + 1)(x - 2)} \) as the sum of simpler fractions. Assume:
\[
\frac{3x + 2}{(x^2 + 1)(x - 2)} = \frac{Ax + B}{x^2 + 1} + \frac{C}{x - 2}
\]
Step 2: Solving for the constants.
Multiply both sides by \( (x^2 + 1)(x - 2) \) to eliminate the denominators:
\[
3x + 2 = (Ax + B)(x - 2) + C(x^2 + 1)
\]
Expanding both sides:
\[
3x + 2 = (Ax^2 - 2Ax + Bx - 2B) + Cx^2 + C
\]
\[
3x + 2 = (A + C)x^2 + (-2A + B)x + (-2B + C)
\]
Step 3: Equating coefficients.
Compare the coefficients of \( x^2 \), \( x \), and the constant term on both sides:
\( A + C = 0 \)
\( -2A + B = 3 \)
\( -2B + C = 2 \)
Step 4: Solving the system of equations.
From \( A + C = 0 \), we get \( C = -A \).
Substitute \( C = -A \) into the second and third equations:
\[
-2A + B = 3 \quad \text{and} \quad -2B - A = 2
\]
Solve the system:
\( B = 3 + 2A \)
Substitute into the second equation:
\[
-2(3 + 2A) - A = 2
\]
\[
-6 - 4A - A = 2 \quad \Rightarrow \quad -5A = 8 \quad \Rightarrow \quad A = -\frac{8}{5}
\]
Substitute \( A = -\frac{8}{5} \) into \( C = -A \):
\[
C = \frac{8}{5}
\]
Substitute \( A = -\frac{8}{5} \) into \( B = 3 + 2A \):
\[
B = 3 + 2\left( -\frac{8}{5} \right) = 3 - \frac{16}{5} = \frac{-1}{5}
\]
Step 5: Substituting back into the integral.
Now substitute the values of \( A \), \( B \), and \( C \) into the partial fraction decomposition:
\[
\frac{3x + 2}{(x^2 + 1)(x - 2)} = \frac{-\frac{8}{5}x - \frac{1}{5}}{x^2 + 1} + \frac{\frac{8}{5}}{x - 2}
\]
Step 6: Integrating each term.
Now integrate each term:
\[
\int \frac{-\frac{8}{5}x - \frac{1}{5}}{x^2 + 1} \, dx + \int \frac{\frac{8}{5}}{x - 2} \, dx
\]
Using the standard integrals:
\[
\int \frac{x}{x^2 + 1} \, dx = \frac{1}{2} \ln(x^2 + 1)
\]
and
\[
\int \frac{1}{x^2 + 1} \, dx = \tan^{-1}(x)
\]
We obtain:
\[
\frac{-8}{5} \left( \frac{1}{2} \ln(x^2 + 1) \right) - \frac{1}{5} \tan^{-1}(x) + \frac{8}{5} \ln|x - 2| + C
\]