Step 1: Recognizing the integral.
The integral \( \int_0^1 \frac{dx}{1 + x^2} \) is a standard integral. We recognize that:
\[
\int \frac{dx}{1 + x^2} = \tan^{-1}(x)
\]
Step 2: Applying the limits.
Using the limits from 0 to 1, we have:
\[
\int_0^1 \frac{dx}{1 + x^2} = \tan^{-1}(1) - \tan^{-1}(0)
\]
Since \( \tan^{-1}(1) = \frac{\pi}{4} \) and \( \tan^{-1}(0) = 0 \), we get:
\[
\frac{\pi}{4} - 0 = \frac{\pi}{4}
\]
Step 3: Conclusion.
Thus, the value of the integral is \( \frac{\pi}{4} \), corresponding to option (B).