$\log _e2$
\[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{r + r} = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{1 + r} \] Using integration approximation: \[ \int_1^n \frac{dx}{1 + x} = [\ln(1 + x)]_1^n = \ln(1+n) - \ln(2) \approx \log 2 \]
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to:
A function's limit is a number that a function reaches when its independent variable comes to a certain value. The value (say a) to which the function f(x) approaches casually as the independent variable x approaches casually a given value "A" denoted as f(x) = A.
If limx→a- f(x) is the expected value of f when x = a, given the values of ‘f’ near x to the left of ‘a’. This value is also called the left-hand limit of ‘f’ at a.
If limx→a+ f(x) is the expected value of f when x = a, given the values of ‘f’ near x to the right of ‘a’. This value is also called the right-hand limit of f(x) at a.
If the right-hand and left-hand limits concur, then it is referred to as a common value as the limit of f(x) at x = a and denote it by lim x→a f(x).