Question:

The value of $\displaystyle \lim_{x \to \infty}\left(1+\frac{2}{3x}\right)^{x}$ is:

Show Hint

Memorize $\left(1+\tfrac{k}{x}\right)^{x}\!\to e^{k}$; it converts many compound-interest–type limits directly to $e^{k}$.
Updated On: Sep 25, 2025
  • $e$
  • $e^{2}$
  • $e^{\tfrac{2}{3}}$
  • $\dfrac{1}{e^{3}}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation


Step 1: Use the standard exponential limit.
Recall $\displaystyle \lim_{x\to\infty}\left(1+\frac{k}{x}\right)^{x}=e^{k}$.

Step 2: Match the form.
Here $\left(1+\dfrac{2}{3x}\right)^{x}=\left(1+\dfrac{\tfrac{2}{3}}{x}\right)^{x}$, so $k=\tfrac{2}{3}$.

Step 3: Evaluate the limit.
Therefore $\displaystyle \lim_{x\to\infty}\left(1+\dfrac{\tfrac{2}{3}}{x}\right)^{x}=e^{\tfrac{2}{3}}$.

Step 4: Conclusion.
The required value is $e^{\tfrac{2}{3}}$.

Was this answer helpful?
0
0

Top Questions on Limits

View More Questions

Questions Asked in CUET PG exam

View More Questions