Step 1: Use the standard exponential limit.
Recall $\displaystyle \lim_{x\to\infty}\left(1+\frac{k}{x}\right)^{x}=e^{k}$.
Step 2: Match the form.
Here $\left(1+\dfrac{2}{3x}\right)^{x}=\left(1+\dfrac{\tfrac{2}{3}}{x}\right)^{x}$, so $k=\tfrac{2}{3}$.
Step 3: Evaluate the limit.
Therefore $\displaystyle \lim_{x\to\infty}\left(1+\dfrac{\tfrac{2}{3}}{x}\right)^{x}=e^{\tfrac{2}{3}}$.
Step 4: Conclusion.
The required value is $e^{\tfrac{2}{3}}$.