Bernoulli’s equation for fluid flow is:
\[ P + \rho gh + \frac{1}{2} \rho v^2 = \text{constant}. \]
Here:
P is the pressure,
\(\rho\) is the density of the fluid,
g is the acceleration due to gravity,
h is the height,
v is the velocity.
Final Answer: \[ P + \rho gh + \frac{1}{2} \rho v^2 = \text{constant}. \]
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
Resonance in X$_2$Y can be represented as
The enthalpy of formation of X$_2$Y is 80 kJ mol$^{-1}$, and the magnitude of resonance energy of X$_2$Y is: