To solve this problem, we need to identify the correct form of Bernoulli's equation. Bernoulli's equation is a principle in fluid dynamics that describes the conservation of energy in a flowing fluid. It is applicable to incompressible, non-viscous fluids. The equation relates the pressure energy, kinetic energy per unit volume, and potential energy per unit volume of a fluid flowing along a streamline.
The general form of Bernoulli's equation is given as:
\(P + \frac{1}{2} \rho v^2 + \rho gh = \text{constant}\)
Now let's analyze the given options:
Therefore, the correct form of Bernoulli's equation is represented by option 2: \(P + \rho gh + \frac{1}{2} \rho v^2 = \text{constant}\).
Bernoulli’s equation for fluid flow is:
\[ P + \rho gh + \frac{1}{2} \rho v^2 = \text{constant}. \]
Here:
P is the pressure,
\(\rho\) is the density of the fluid,
g is the acceleration due to gravity,
h is the height,
v is the velocity.
Final Answer: \[ P + \rho gh + \frac{1}{2} \rho v^2 = \text{constant}. \]
A cube of side 10 cm is suspended from one end of a fine string of length 27 cm, and a mass of 200 grams is connected to the other end of the string. When the cube is half immersed in water, the system remains in balance. Find the density of the cube.
If the domain of the function \( f(x) = \frac{1}{\sqrt{3x + 10 - x^2}} + \frac{1}{\sqrt{x + |x|}} \) is \( (a, b) \), then \( (1 + a)^2 + b^2 \) is equal to:
A point particle of charge \( Q \) is located at \( P \) along the axis of an electric dipole 1 at a distance \( r \) as shown in the figure. The point \( P \) is also on the equatorial plane of a second electric dipole 2 at a distance \( r \). The dipoles are made of opposite charge \( q \) separated by a distance \( 2a \). For the charge particle at \( P \) not to experience any net force, which of the following correctly describes the situation?

Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Choke coil is simply a coil having a large inductance but a small resistance. Choke coils are used with fluorescent mercury-tube fittings. If household electric power is directly connected to a mercury tube, the tube will be damaged.
Reason (R): By using the choke coil, the voltage across the tube is reduced by a factor \( \frac{R}{\sqrt{R^2 + \omega^2 L^2}} \), where \( \omega \) is the frequency of the supply across resistor \( R \) and inductor \( L \). If the choke coil were not used, the voltage across the resistor would be the same as the applied voltage.
In light of the above statements, choose the most appropriate answer from the options given below:
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Choke coil is simply a coil having a large inductance but a small resistance. Choke coils are used with fluorescent mercury-tube fittings. If household electric power is directly connected to a mercury tube, the tube will be damaged.
Reason (R): By using the choke coil, the voltage across the tube is reduced by a factor \( \frac{R}{\sqrt{R^2 + \omega^2 L^2}} \), where \( \omega \) is the frequency of the supply across resistor \( R \) and inductor \( L \). If the choke coil were not used, the voltage across the resistor would be the same as the applied voltage.
In light of the above statements, choose the most appropriate answer from the options given below: