To solve this problem, we need to identify the correct form of Bernoulli's equation. Bernoulli's equation is a principle in fluid dynamics that describes the conservation of energy in a flowing fluid. It is applicable to incompressible, non-viscous fluids. The equation relates the pressure energy, kinetic energy per unit volume, and potential energy per unit volume of a fluid flowing along a streamline.
The general form of Bernoulli's equation is given as:
\(P + \frac{1}{2} \rho v^2 + \rho gh = \text{constant}\)
Now let's analyze the given options:
Therefore, the correct form of Bernoulli's equation is represented by option 2: \(P + \rho gh + \frac{1}{2} \rho v^2 = \text{constant}\).
Bernoulli’s equation for fluid flow is:
\[ P + \rho gh + \frac{1}{2} \rho v^2 = \text{constant}. \]
Here:
P is the pressure,
\(\rho\) is the density of the fluid,
g is the acceleration due to gravity,
h is the height,
v is the velocity.
Final Answer: \[ P + \rho gh + \frac{1}{2} \rho v^2 = \text{constant}. \]
A flexible chain of mass $m$ is hanging as shown. Find tension at the lowest point. 

Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
