We are tasked with determining the velocities at the top and bottom of a circular motion and finding the ratio of these velocities. The solution proceeds as follows:
1. Velocity at the Top:
The velocity at the top of the circular motion is given by:
$ V_{\text{Top}} = \sqrt{n^2 g R} $
2. Velocity at the Bottom:
The velocity at the bottom of the circular motion includes an additional contribution due to gravitational potential energy. It is given by:
$ V_{\text{Bottom}} = \sqrt{n^2 g R + 4gR} $
3. Ratio of Velocities:
To find the ratio of the squares of the velocities, we compute:
$ \text{Ratio} = \frac{V_{\text{Bottom}}^2}{V_{\text{Top}}^2} $
Substitute the expressions for $ V_{\text{Top}}^2 $ and $ V_{\text{Bottom}}^2 $:
$ V_{\text{Top}}^2 = n^2 g R $
$ V_{\text{Bottom}}^2 = n^2 g R + 4gR $
$ \text{Ratio} = \frac{n^2 g R + 4gR}{n^2 g R} $
Factor out $ gR $ from the numerator:
$ \text{Ratio} = \frac{gR (n^2 + 4)}{gR n^2} $
Simplify the expression:
$ \text{Ratio} = \frac{n^2 + 4}{n^2} $
Final Answer:
The ratio of the squares of the velocities is:
$ \boxed{\frac{n^2 + 4}{n^2}} $
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
Resonance in X$_2$Y can be represented as
The enthalpy of formation of X$_2$Y is 80 kJ mol$^{-1}$, and the magnitude of resonance energy of X$_2$Y is: