We are tasked with determining the velocities at the top and bottom of a circular motion and finding the ratio of these velocities. The solution proceeds as follows:
1. Velocity at the Top:
The velocity at the top of the circular motion is given by:
$ V_{\text{Top}} = \sqrt{n^2 g R} $
2. Velocity at the Bottom:
The velocity at the bottom of the circular motion includes an additional contribution due to gravitational potential energy. It is given by:
$ V_{\text{Bottom}} = \sqrt{n^2 g R + 4gR} $
3. Ratio of Velocities:
To find the ratio of the squares of the velocities, we compute:
$ \text{Ratio} = \frac{V_{\text{Bottom}}^2}{V_{\text{Top}}^2} $
Substitute the expressions for $ V_{\text{Top}}^2 $ and $ V_{\text{Bottom}}^2 $:
$ V_{\text{Top}}^2 = n^2 g R $
$ V_{\text{Bottom}}^2 = n^2 g R + 4gR $
$ \text{Ratio} = \frac{n^2 g R + 4gR}{n^2 g R} $
Factor out $ gR $ from the numerator:
$ \text{Ratio} = \frac{gR (n^2 + 4)}{gR n^2} $
Simplify the expression:
$ \text{Ratio} = \frac{n^2 + 4}{n^2} $
Final Answer:
The ratio of the squares of the velocities is:
$ \boxed{\frac{n^2 + 4}{n^2}} $
Statement-1: \( \text{ClF}_3 \) has 3 possible structures.
Statement-2: \( \text{III} \) is the most stable structure due to least lone pair-bond pair (lp-bp) repulsion.
Which of the following options is correct?
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Choke coil is simply a coil having a large inductance but a small resistance. Choke coils are used with fluorescent mercury-tube fittings. If household electric power is directly connected to a mercury tube, the tube will be damaged.
Reason (R): By using the choke coil, the voltage across the tube is reduced by a factor \( \frac{R}{\sqrt{R^2 + \omega^2 L^2}} \), where \( \omega \) is the frequency of the supply across resistor \( R \) and inductor \( L \). If the choke coil were not used, the voltage across the resistor would be the same as the applied voltage.
In light of the above statements, choose the most appropriate answer from the options given below: