We are tasked with determining the velocities at the top and bottom of a circular motion and finding the ratio of these velocities. The solution proceeds as follows:
1. Velocity at the Top:
The velocity at the top of the circular motion is given by:
$ V_{\text{Top}} = \sqrt{n^2 g R} $
2. Velocity at the Bottom:
The velocity at the bottom of the circular motion includes an additional contribution due to gravitational potential energy. It is given by:
$ V_{\text{Bottom}} = \sqrt{n^2 g R + 4gR} $
3. Ratio of Velocities:
To find the ratio of the squares of the velocities, we compute:
$ \text{Ratio} = \frac{V_{\text{Bottom}}^2}{V_{\text{Top}}^2} $
Substitute the expressions for $ V_{\text{Top}}^2 $ and $ V_{\text{Bottom}}^2 $:
$ V_{\text{Top}}^2 = n^2 g R $
$ V_{\text{Bottom}}^2 = n^2 g R + 4gR $
$ \text{Ratio} = \frac{n^2 g R + 4gR}{n^2 g R} $
Factor out $ gR $ from the numerator:
$ \text{Ratio} = \frac{gR (n^2 + 4)}{gR n^2} $
Simplify the expression:
$ \text{Ratio} = \frac{n^2 + 4}{n^2} $
Final Answer:
The ratio of the squares of the velocities is:
$ \boxed{\frac{n^2 + 4}{n^2}} $
A flexible chain of mass $m$ is hanging as shown. Find tension at the lowest point. 

Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.