We are tasked with determining the velocities at the top and bottom of a circular motion and finding the ratio of these velocities. The solution proceeds as follows:
1. Velocity at the Top:
The velocity at the top of the circular motion is given by:
$ V_{\text{Top}} = \sqrt{n^2 g R} $
2. Velocity at the Bottom:
The velocity at the bottom of the circular motion includes an additional contribution due to gravitational potential energy. It is given by:
$ V_{\text{Bottom}} = \sqrt{n^2 g R + 4gR} $
3. Ratio of Velocities:
To find the ratio of the squares of the velocities, we compute:
$ \text{Ratio} = \frac{V_{\text{Bottom}}^2}{V_{\text{Top}}^2} $
Substitute the expressions for $ V_{\text{Top}}^2 $ and $ V_{\text{Bottom}}^2 $:
$ V_{\text{Top}}^2 = n^2 g R $
$ V_{\text{Bottom}}^2 = n^2 g R + 4gR $
$ \text{Ratio} = \frac{n^2 g R + 4gR}{n^2 g R} $
Factor out $ gR $ from the numerator:
$ \text{Ratio} = \frac{gR (n^2 + 4)}{gR n^2} $
Simplify the expression:
$ \text{Ratio} = \frac{n^2 + 4}{n^2} $
Final Answer:
The ratio of the squares of the velocities is:
$ \boxed{\frac{n^2 + 4}{n^2}} $
$\text{The fractional compression } \left( \frac{\Delta V}{V} \right) \text{ of water at the depth of } 2.5 \, \text{km below the sea level is } \_\_\_\_\_\_\_\_\_\_ \%. \text{ Given, the Bulk modulus of water } = 2 \times 10^9 \, \text{N m}^{-2}, \text{ density of water } = 10^3 \, \text{kg m}^{-3}, \text{ acceleration due to gravity } g = 10 \, \text{m s}^{-2}.$
Consider the following statements:
A. Surface tension arises due to extra energy of the molecules at the interior as compared to the molecules at the surface of a liquid.
B. As the temperature of liquid rises, the coefficient of viscosity increases.
C. As the temperature of gas increases, the coefficient of viscosity increases.
D. The onset of turbulence is determined by Reynolds number.
E. In a steady flow, two streamlines never intersect.
Choose the correct answer from the options given below:
Two vessels A and B are connected via stopcock. Vessel A is filled with a gas at a certain pressure. The entire assembly is immersed in water and allowed to come to thermal equilibrium with water. After opening the stopcock the gas from vessel A expands into vessel B and no change in temperature is observed in the thermometer. Which of the following statement is true?
Choose the correct nuclear process from the below options:
\( [ p : \text{proton}, n : \text{neutron}, e^- : \text{electron}, e^+ : \text{positron}, \nu : \text{neutrino}, \bar{\nu} : \text{antineutrino} ] \)
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: