The terminal velocity \( v_T \) of a sphere falling through a viscous fluid is given by Stokes' Law: \[ v_T = \frac{2 r^2 (\rho_s - \rho_l) g}{9 \eta} \] where \( r \) is the radius of the sphere, \( \rho_s \) is the density of the sphere (steel), \( \rho_l \) is the density of the liquid (oil), \( g \) is the acceleration due to gravity, and \( \eta \) is the viscosity of the liquid.
Given:
Diameter of the steel ball \( d = 3.6 \, \text{mm} = 3.6 \times 10^{-3} \, \text{m} \)
Radius of the steel ball \( r = \frac{d}{2} = \frac{3.6 \times 10^{-3}}{2} = 1.8 \times 10^{-3} \, \text{m} \)
Terminal velocity \( v_T = 2.45 \times 10^{-2} \, \text{m/s} \) Density of oil \( \rho_l = 925 \, \text{kg m}^{-3} \)
Density of steel \( \rho_s = 7825 \, \text{kg m}^{-3} \)
Acceleration due to gravity \( g = 9.8 \, \text{m/s}^2 \)
We need to find the viscosity \( \eta \) of the oil.
Rearranging the formula for terminal velocity: \[ \eta = \frac{2 r^2 (\rho_s - \rho_l) g}{9 v_T} \]
Substituting the given values: \[ \eta = \frac{2 (1.8 \times 10^{-3})^2 (7825 - 925) (9.8)}{9 (2.45 \times 10^{-2})} \] \[ \eta = \frac{2 (3.24 \times 10^{-6}) (6900) (9.8)}{9 (2.45 \times 10^{-2})} \] \[ \eta = \frac{2 \times 3.24 \times 10^{-6} \times 6900 \times 9.8}{0.2205} \] \[ \eta = \frac{0.436512}{0.2205} \] \[ \eta \approx 1.98 \, \text{Pa s} \] The viscosity of the oil is approximately 1.98 Pa s, which is close to 1.99.
Which of the following statements are true?
A. The same Bernoulli's equation is applicable to all the points in the flow field if the flow is irrotational.
B. The value of "Constant in the Bernoulli's equation" is different for different streamlines if the flow is rotational.
C. When a nozzle is fitted at the end of a long pipeline, the discharge increases.
D. The velocity of flow at the nozzle end is more than that in the case of a pipe without a nozzle, the head in both cases being the same.
Choose the most appropriate answer from the options given below:
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: