The terminal velocity \( v_T \) of a sphere falling through a viscous fluid is given by Stokes' Law: \[ v_T = \frac{2 r^2 (\rho_s - \rho_l) g}{9 \eta} \] where \( r \) is the radius of the sphere, \( \rho_s \) is the density of the sphere (steel), \( \rho_l \) is the density of the liquid (oil), \( g \) is the acceleration due to gravity, and \( \eta \) is the viscosity of the liquid.
Given:
Diameter of the steel ball \( d = 3.6 \, \text{mm} = 3.6 \times 10^{-3} \, \text{m} \)
Radius of the steel ball \( r = \frac{d}{2} = \frac{3.6 \times 10^{-3}}{2} = 1.8 \times 10^{-3} \, \text{m} \)
Terminal velocity \( v_T = 2.45 \times 10^{-2} \, \text{m/s} \) Density of oil \( \rho_l = 925 \, \text{kg m}^{-3} \)
Density of steel \( \rho_s = 7825 \, \text{kg m}^{-3} \)
Acceleration due to gravity \( g = 9.8 \, \text{m/s}^2 \)
We need to find the viscosity \( \eta \) of the oil.
Rearranging the formula for terminal velocity: \[ \eta = \frac{2 r^2 (\rho_s - \rho_l) g}{9 v_T} \]
Substituting the given values: \[ \eta = \frac{2 (1.8 \times 10^{-3})^2 (7825 - 925) (9.8)}{9 (2.45 \times 10^{-2})} \] \[ \eta = \frac{2 (3.24 \times 10^{-6}) (6900) (9.8)}{9 (2.45 \times 10^{-2})} \] \[ \eta = \frac{2 \times 3.24 \times 10^{-6} \times 6900 \times 9.8}{0.2205} \] \[ \eta = \frac{0.436512}{0.2205} \] \[ \eta \approx 1.98 \, \text{Pa s} \] The viscosity of the oil is approximately 1.98 Pa s, which is close to 1.99.
$XY$ is the membrane / partition between two chambers 1 and 2 containing sugar solutions of concentration $\mathrm{c}_{1}$ and $\mathrm{c}_{2}\left(\mathrm{c}_{1}>\mathrm{c}_{2}\right) \mathrm{mol} \mathrm{L}^{-1}$. For the reverse osmosis to take place identify the correct condition} (Here $\mathrm{p}_{1}$ and $\mathrm{p}_{2}$ are pressures applied on chamber 1 and 2 )
Match List-I with List-II: List-I