The correct option is (A): 0
Prove that:
\( \tan^{-1}(\sqrt{x}) = \frac{1}{2} \cos^{-1}\left( \frac{1 - x}{1 + x} \right), \quad x \in [0, 1] \)
Find the principal value of:
\( \cos^{-1}\left(-\frac{1}{2}\right) + 2\sin^{-1}(1) \)
A bob of mass \(m\) is suspended at a point \(O\) by a light string of length \(l\) and left to perform vertical motion (circular) as shown in the figure. Initially, by applying horizontal velocity \(v_0\) at the point ‘A’, the string becomes slack when the bob reaches at the point ‘D’. The ratio of the kinetic energy of the bob at the points B and C is:
The inverse trigonometric functions are also called arcus functions or anti trigonometric functions. These are the inverse functions of the trigonometric functions with suitably restricted domains. Specifically, they are the inverse functions of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle’s trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.
Considering the domain and range of the inverse functions, following formulas are important to be noted:
Also, the following formulas are defined for inverse trigonometric functions.
cosec−1(cosec y) = y if -π/2 ≤ y ≤ π/2, y ≠ 0