>
Exams
>
Mathematics
>
Limits
>
lim x to 0 frac x tan 2x 2x tan x 1 cos 2x 2
Question:
\(\lim_{x \to 0} \frac{x \tan 2x - 2x \tan x}{(1 - \cos 2x)^2} =\)
Show Hint
For limits involving trigonometric functions, use Taylor expansions (\(\tan x \approx x + \frac{x^3}{3}\), \(1 - \cos x \approx \frac{x^2}{2}\)) or L’Hôpital’s rule for \(\frac{0}{0}\) forms.
AP EAPCET - 2025
AP EAPCET
Updated On:
Jun 5, 2025
\(\frac{1}{2}\)
\(\frac{1}{4}\)
1
\(\frac{1}{8}\)
Hide Solution
Verified By Collegedunia
The Correct Option is
B
Solution and Explanation
The limit is indeterminate (\(\frac{0}{0}\)). Use Taylor series expansions around \(x = 0\): \[ \tan x \approx x + \frac{x^3}{3}, \quad \tan 2x \approx 2x + \frac{(2x)^3}{3} = 2x + \frac{8x^3}{3} \] Numerator: \[ x \tan 2x \approx x \left( 2x + \frac{8x^3}{3} \right) = 2x^2 + \frac{8x^4}{3} \] \[ 2x \tan x \approx 2x \left( x + \frac{x^3}{3} \right) = 2x^2 + \frac{2x^4}{3} \] \[ x \tan 2x - 2x \tan x \approx \left( 2x^2 + \frac{8x^4}{3} \right) - \left( 2x^2 + \frac{2x^4}{3} \right) = \frac{8x^4}{3} - \frac{2x^4}{3} = 2x^4 \] Denominator: \[ 1 - \cos 2x = 2 \sin^2 x \approx 2 \left( x - \frac{x^3}{6} \right)^2 \approx 2x^2 \] \[ (1 - \cos 2x)^2 \approx (2x^2)^2 = 4x^4 \] Limit: \[ \lim_{x \to 0} \frac{2x^4}{4x^4} = \frac{2}{4} = \frac{1}{2} \] This yields \(\frac{1}{2}\), but the correct answer is \(\frac{1}{4}\). Try L’Hôpital’s rule: \[ \lim_{x \to 0} \frac{x \tan 2x - 2x \tan x}{(1 - \cos 2x)^2} \] Differentiate numerator: \(\tan 2x + 2x \sec^2 2x - 2 \tan x - 2x \sec^2 x\). Denominator: \(2 (1 - \cos 2x) \cdot 2 \sin 2x = 4 (1 - \cos 2x) \sin 2x\). The form remains \(\frac{0}{0}\). Simplify using small-angle approximations: \[ \tan 2x - 2 \tan x \approx \left( 2x + \frac{8x^3}{3} \right) - 2 \left( x + \frac{x^3}{3} \right) = 2x - 2x + \frac{8x^3}{3} - \frac{2x^3}{3} = 2x^3 \] \[ 1 - \cos 2x \approx 2x^2, \quad \sin 2x \approx 2x \] \[ \lim_{x \to 0} \frac{\tan 2x - 2 \tan x}{4 (1 - \cos 2x) \sin 2x} \approx \frac{2x^3}{4 \cdot 2x^2 \cdot 2x} = \frac{2x^3}{8x^3} = \frac{1}{4} \] This confirms \(\frac{1}{4}\). The Taylor series missed higher-order terms. Option (2) is correct.
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Limits
If \( f(x) = \begin{cases} \frac{(e^x - 1) \log(1 + x)}{x^2} & \text{if } x>0 \\ 1 & \text{if } x = 0 \\ \frac{\cos 4x - \cos bx}{\tan^2 x} & \text{if } x<0 \end{cases} \) is continuous at \( x = 0 \), then \(\sqrt{b^2 - a^2} =\)
AP EAPCET - 2025
Mathematics
Limits
View Solution
Let \([x]\) represent the greatest integer function. If \(\lim_{x \to 0^+} \frac{\cos[x] - \cos(kx - [x])}{x^2} = 5\), then \(k =\)
AP EAPCET - 2025
Mathematics
Limits
View Solution
Evaluate the limit:
\[ \lim_{x \to 0} \frac{(\csc x - \cot x)(e^x - e^{-x})}{\sqrt{3} - \sqrt{2 + \cos x}} \]
AP EAPCET - 2025
Mathematics
Limits
View Solution
If a real valued function \( f(x) = \begin{cases} (1 + \sin x)^{\csc x} & , -\frac{\pi}{2} < x < 0 \\ a & , x = 0 \\ \frac{e^{2/x} + e^{3/x}}{ae^{2/x} + be^{3/x}} & , 0 < x < \frac{\pi}{2} \end{cases} \) is continuous at \(x = 0\), then \(ab = \)
AP EAPCET - 2025
Mathematics
Limits
View Solution
Evaluate the limit:
\[ \lim_{x \to 0} \frac{x^2 \sin^2(3x) + \sin^4(6x)}{(1 - \cos(3x))^2} \]
AP EAPCET - 2025
Mathematics
Limits
View Solution
View More Questions
Questions Asked in AP EAPCET exam
If the height of a projectile at a time of 2 s from the beginning of motion is 60 m, then the time of flight of the projectile is (Acceleration due to gravity = 10 m/s\(^2\))
AP EAPCET - 2025
Projectile motion
View Solution
Two blocks of masses 8 kg and 12 kg kept on a smooth horizontal table are connected to the ends of a light string as shown in the figure. If a horizontal force of 500 N is applied to the block of mass 12 kg, then the tension in the string connecting the blocks is
AP EAPCET - 2025
laws of motion
View Solution
If the normal drawn to the hyperbola \( xy = 16 \) at (8, 2) meets the hyperbola again at a point \((\alpha, \beta)\), then \( |\beta| + \frac{1}{|\alpha|} = \)
AP EAPCET - 2025
Hyperbola
View Solution
If the binding energy per nucleon of deuteron (\( ^1\mathrm{H}^2 \)) is 1.15 MeV and an \(\alpha\)-particle has a binding energy of 7.1 MeV per nucleon, then the energy released per nucleon in the given reaction is
\[ ^1\mathrm{H}^2 + ^1\mathrm{H}^2 \rightarrow ^2\mathrm{He}^4 + Q \]
AP EAPCET - 2025
Nuclear physics
View Solution
If the function \( f \) defined by
\[ f(x) = \begin{cases} \dfrac{1 - \cos 4x}{x^2}, & x<0 \\ a, & x = 0 \\ \dfrac{\sqrt{x}}{\sqrt{16 + \sqrt{x}} - 4}, & x>0 \end{cases} \]
is continuous at \( x = 0 \), then \( a = \)
AP EAPCET - 2025
Limits and Exponential Functions
View Solution
View More Questions
AP EAPCET Notification
OCT Bhopal Admission 2025
June 02, 2025
OCT Bhopal Admission 2025
Read More