>
Exams
>
Mathematics
>
Limits
>
lim x to 0 frac x tan 2x 2x tan x 1 cos 2x 2
Question:
\(\lim_{x \to 0} \frac{x \tan 2x - 2x \tan x}{(1 - \cos 2x)^2} =\)
Show Hint
For limits involving trigonometric functions, use Taylor expansions (\(\tan x \approx x + \frac{x^3}{3}\), \(1 - \cos x \approx \frac{x^2}{2}\)) or L’Hôpital’s rule for \(\frac{0}{0}\) forms.
AP EAPCET - 2025
AP EAPCET
Updated On:
Jun 5, 2025
\(\frac{1}{2}\)
\(\frac{1}{4}\)
1
\(\frac{1}{8}\)
Hide Solution
Verified By Collegedunia
The Correct Option is
B
Solution and Explanation
The limit is indeterminate (\(\frac{0}{0}\)). Use Taylor series expansions around \(x = 0\): \[ \tan x \approx x + \frac{x^3}{3}, \quad \tan 2x \approx 2x + \frac{(2x)^3}{3} = 2x + \frac{8x^3}{3} \] Numerator: \[ x \tan 2x \approx x \left( 2x + \frac{8x^3}{3} \right) = 2x^2 + \frac{8x^4}{3} \] \[ 2x \tan x \approx 2x \left( x + \frac{x^3}{3} \right) = 2x^2 + \frac{2x^4}{3} \] \[ x \tan 2x - 2x \tan x \approx \left( 2x^2 + \frac{8x^4}{3} \right) - \left( 2x^2 + \frac{2x^4}{3} \right) = \frac{8x^4}{3} - \frac{2x^4}{3} = 2x^4 \] Denominator: \[ 1 - \cos 2x = 2 \sin^2 x \approx 2 \left( x - \frac{x^3}{6} \right)^2 \approx 2x^2 \] \[ (1 - \cos 2x)^2 \approx (2x^2)^2 = 4x^4 \] Limit: \[ \lim_{x \to 0} \frac{2x^4}{4x^4} = \frac{2}{4} = \frac{1}{2} \] This yields \(\frac{1}{2}\), but the correct answer is \(\frac{1}{4}\). Try L’Hôpital’s rule: \[ \lim_{x \to 0} \frac{x \tan 2x - 2x \tan x}{(1 - \cos 2x)^2} \] Differentiate numerator: \(\tan 2x + 2x \sec^2 2x - 2 \tan x - 2x \sec^2 x\). Denominator: \(2 (1 - \cos 2x) \cdot 2 \sin 2x = 4 (1 - \cos 2x) \sin 2x\). The form remains \(\frac{0}{0}\). Simplify using small-angle approximations: \[ \tan 2x - 2 \tan x \approx \left( 2x + \frac{8x^3}{3} \right) - 2 \left( x + \frac{x^3}{3} \right) = 2x - 2x + \frac{8x^3}{3} - \frac{2x^3}{3} = 2x^3 \] \[ 1 - \cos 2x \approx 2x^2, \quad \sin 2x \approx 2x \] \[ \lim_{x \to 0} \frac{\tan 2x - 2 \tan x}{4 (1 - \cos 2x) \sin 2x} \approx \frac{2x^3}{4 \cdot 2x^2 \cdot 2x} = \frac{2x^3}{8x^3} = \frac{1}{4} \] This confirms \(\frac{1}{4}\). The Taylor series missed higher-order terms. Option (2) is correct.
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Limits
Find the equation of the tangent line to the curve \( y = x^2 - 3x + 2 \) at the point \( (1, 0) \).
IIITH UGEE - 2025
Mathematics
Limits
View Solution
The value of
\[ \lim_{x \to 1} \frac{x^4 - \sqrt{x}}{\sqrt{x} - 1} \]
is:
KCET - 2025
Mathematics
Limits
View Solution
If \( f(x) = \begin{cases} \frac{(e^x - 1) \log(1 + x)}{x^2} & \text{if } x>0 \\ 1 & \text{if } x = 0 \\ \frac{\cos 4x - \cos bx}{\tan^2 x} & \text{if } x<0 \end{cases} \) is continuous at \( x = 0 \), then \(\sqrt{b^2 - a^2} =\)
AP EAPCET - 2025
Mathematics
Limits
View Solution
Let \([x]\) represent the greatest integer function. If \(\lim_{x \to 0^+} \frac{\cos[x] - \cos(kx - [x])}{x^2} = 5\), then \(k =\)
AP EAPCET - 2025
Mathematics
Limits
View Solution
Evaluate the limit:
\[ \lim_{x \to 0} \frac{(\csc x - \cot x)(e^x - e^{-x})}{\sqrt{3} - \sqrt{2 + \cos x}} \]
AP EAPCET - 2025
Mathematics
Limits
View Solution
View More Questions
Questions Asked in AP EAPCET exam
\[ \left( \sqrt{2} + 1 + i \sqrt{2} - 1 \right)^8 = ? \]
AP EAPCET - 2025
Complex numbers
View Solution
For all $n \in \mathbb{N}$, if $n(n^2+3)$ is divisible by $k$, then the maximum value of $k$ is
AP EAPCET - 2025
Number Systems
View Solution
If \(\alpha\) is the angle made by the perpendicular drawn from origin to the line \(12x - 5y + 13 = 0\) with the positive X-axis in anti-clockwise direction, then \(\alpha =\)
AP EAPCET - 2025
Geometry
View Solution
If
\[ A = \begin{bmatrix} x & 2 & 1 \\ -2 & y & 0 \\ 2 & 0 & -1 \end{bmatrix}, \] where \( x \) and \( y \) are non-zero real numbers, trace of \( A = 0 \), and determinant of \( A = -6 \), then the minor of the element 1 of \( A \) is:}
AP EAPCET - 2025
Complex numbers
View Solution
If $X$ is a binomial variate with mean $\frac{16}{5}$ and variance $\frac{48}{25}$, then $P(X \leq 2) =$
AP EAPCET - 2025
Probability
View Solution
View More Questions