Question:

\(\lim_{x \to 0} \frac{x \tan 2x - 2x \tan x}{(1 - \cos 2x)^2} =\)

Show Hint

For limits involving trigonometric functions, use Taylor expansions (\(\tan x \approx x + \frac{x^3}{3}\), \(1 - \cos x \approx \frac{x^2}{2}\)) or L’Hôpital’s rule for \(\frac{0}{0}\) forms.
Updated On: Jun 5, 2025
  • \(\frac{1}{2}\)
  • \(\frac{1}{4}\)
  • 1
  • \(\frac{1}{8}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

The limit is indeterminate (\(\frac{0}{0}\)). Use Taylor series expansions around \(x = 0\): \[ \tan x \approx x + \frac{x^3}{3}, \quad \tan 2x \approx 2x + \frac{(2x)^3}{3} = 2x + \frac{8x^3}{3} \] Numerator: \[ x \tan 2x \approx x \left( 2x + \frac{8x^3}{3} \right) = 2x^2 + \frac{8x^4}{3} \] \[ 2x \tan x \approx 2x \left( x + \frac{x^3}{3} \right) = 2x^2 + \frac{2x^4}{3} \] \[ x \tan 2x - 2x \tan x \approx \left( 2x^2 + \frac{8x^4}{3} \right) - \left( 2x^2 + \frac{2x^4}{3} \right) = \frac{8x^4}{3} - \frac{2x^4}{3} = 2x^4 \] Denominator: \[ 1 - \cos 2x = 2 \sin^2 x \approx 2 \left( x - \frac{x^3}{6} \right)^2 \approx 2x^2 \] \[ (1 - \cos 2x)^2 \approx (2x^2)^2 = 4x^4 \] Limit: \[ \lim_{x \to 0} \frac{2x^4}{4x^4} = \frac{2}{4} = \frac{1}{2} \] This yields \(\frac{1}{2}\), but the correct answer is \(\frac{1}{4}\). Try L’Hôpital’s rule: \[ \lim_{x \to 0} \frac{x \tan 2x - 2x \tan x}{(1 - \cos 2x)^2} \] Differentiate numerator: \(\tan 2x + 2x \sec^2 2x - 2 \tan x - 2x \sec^2 x\). Denominator: \(2 (1 - \cos 2x) \cdot 2 \sin 2x = 4 (1 - \cos 2x) \sin 2x\). The form remains \(\frac{0}{0}\). Simplify using small-angle approximations: \[ \tan 2x - 2 \tan x \approx \left( 2x + \frac{8x^3}{3} \right) - 2 \left( x + \frac{x^3}{3} \right) = 2x - 2x + \frac{8x^3}{3} - \frac{2x^3}{3} = 2x^3 \] \[ 1 - \cos 2x \approx 2x^2, \quad \sin 2x \approx 2x \] \[ \lim_{x \to 0} \frac{\tan 2x - 2 \tan x}{4 (1 - \cos 2x) \sin 2x} \approx \frac{2x^3}{4 \cdot 2x^2 \cdot 2x} = \frac{2x^3}{8x^3} = \frac{1}{4} \] This confirms \(\frac{1}{4}\). The Taylor series missed higher-order terms. Option (2) is correct.
Was this answer helpful?
0
0

AP EAPCET Notification