For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
| List - I | List - II |
|---|---|
| A) Morphine | IV) Pain killer |
| B) Cannabinoids | V) Dopamine |
| C) Cocaine | I) Cardiovascular system |
| D) Benzodiazepines | II) Tranquilizers |