We need to evaluate the limit:
\[
\lim_{x \to 1} \frac{x^4 - \sqrt{x}}{\sqrt{x} - 1}
\]
Using L'Hopital's Rule (since the limit yields a \( \frac{0}{0} \) indeterminate form), we differentiate the numerator and denominator:
The numerator is \( \frac{d}{dx}(x^4 - \sqrt{x}) = 4x^3 - \frac{1}{2\sqrt{x}} \).
The denominator is \( \frac{d}{dx}(\sqrt{x} - 1) = \frac{1}{2\sqrt{x}} \).
Now, applying L'Hopital's Rule:
\[
\lim_{x \to 1} \frac{4x^3 - \frac{1}{2\sqrt{x}}}{\frac{1}{2\sqrt{x}}}
\]
Substitute \( x = 1 \):
\[
\frac{4(1)^3 - \frac{1}{2}}{\frac{1}{2}} = \frac{4 - \frac{1}{2}}{\frac{1}{2}} = \frac{\frac{7}{2}}{\frac{1}{2}} = 7
\]
Thus, the value of the limit is \( 7 \).