Statement I:
\[ \left( \lvert z_1 \rvert + \lvert z_2 \rvert \right) \left\lvert \frac{z_1}{\lvert z_1 \rvert} + \frac{z_2}{\lvert z_2 \rvert} \right\rvert \leq 2 \left( \lvert z_1 \rvert + \lvert z_2 \rvert \right) \]
Since
\[ \left\lvert \frac{z_1}{\lvert z_1 \rvert} + \frac{z_2}{\lvert z_2 \rvert} \right\rvert \leq 2 \]
we have
\[ \left( \lvert z_1 \rvert + \lvert z_2 \rvert \right) \left\lvert \frac{z_1}{\lvert z_1 \rvert} + \frac{z_2}{\lvert z_2 \rvert} \right\rvert \leq 2 \left( \lvert z_1 \rvert + \lvert z_2 \rvert \right) \]
Thus, Statement I is correct.
Statement II: Given
\[ \frac{a}{\lvert y - z \rvert} = \frac{b}{\lvert z - x \rvert} = \frac{c}{\lvert x - y \rvert} \]
let
\[ \frac{a}{\lvert y - z \rvert} = \frac{b}{\lvert z - x \rvert} = \frac{c}{\lvert x - y \rvert} = \lambda \]
Then,
\[ a^2 = \lambda \lvert y - z \rvert, \quad b^2 = \lambda \lvert z - x \rvert, \quad c^2 = \lambda \lvert x - y \rvert \]
Substituting, we get:
\[ \frac{a^2}{y - z} + \frac{b^2}{z - x} + \frac{c^2}{x - y} = \lambda \left( \frac{y - z}{y - z} + \frac{z - x}{z - x} + \frac{x - y}{x - y} \right) \]
Thus, Statement II is false.
If \( \text{Re} \left( \frac{2z + i}{z + i} \right) + \text{Re} \left( \frac{2z - i}{z - i} \right) = 2 \) is a circle of radius \( r \) and centre \( (a, b) \), then \( \frac{15ab}{r^2} \) is equal to: