Statement I:
\[ \left( \lvert z_1 \rvert + \lvert z_2 \rvert \right) \left\lvert \frac{z_1}{\lvert z_1 \rvert} + \frac{z_2}{\lvert z_2 \rvert} \right\rvert \leq 2 \left( \lvert z_1 \rvert + \lvert z_2 \rvert \right) \]
Since
\[ \left\lvert \frac{z_1}{\lvert z_1 \rvert} + \frac{z_2}{\lvert z_2 \rvert} \right\rvert \leq 2 \]
we have
\[ \left( \lvert z_1 \rvert + \lvert z_2 \rvert \right) \left\lvert \frac{z_1}{\lvert z_1 \rvert} + \frac{z_2}{\lvert z_2 \rvert} \right\rvert \leq 2 \left( \lvert z_1 \rvert + \lvert z_2 \rvert \right) \]
Thus, Statement I is correct.
Statement II: Given
\[ \frac{a}{\lvert y - z \rvert} = \frac{b}{\lvert z - x \rvert} = \frac{c}{\lvert x - y \rvert} \]
let
\[ \frac{a}{\lvert y - z \rvert} = \frac{b}{\lvert z - x \rvert} = \frac{c}{\lvert x - y \rvert} = \lambda \]
Then,
\[ a^2 = \lambda \lvert y - z \rvert, \quad b^2 = \lambda \lvert z - x \rvert, \quad c^2 = \lambda \lvert x - y \rvert \]
Substituting, we get:
\[ \frac{a^2}{y - z} + \frac{b^2}{z - x} + \frac{c^2}{x - y} = \lambda \left( \frac{y - z}{y - z} + \frac{z - x}{z - x} + \frac{x - y}{x - y} \right) \]
Thus, Statement II is false.
If \( z \) is a complex number and \( k \in \mathbb{R} \), such that \( |z| = 1 \), \[ \frac{2 + k^2 z}{k + \overline{z}} = kz, \] then the maximum distance from \( k + i k^2 \) to the circle \( |z - (1 + 2i)| = 1 \) is:
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
