Statement I:
\[ \left( \lvert z_1 \rvert + \lvert z_2 \rvert \right) \left\lvert \frac{z_1}{\lvert z_1 \rvert} + \frac{z_2}{\lvert z_2 \rvert} \right\rvert \leq 2 \left( \lvert z_1 \rvert + \lvert z_2 \rvert \right) \]
Since
\[ \left\lvert \frac{z_1}{\lvert z_1 \rvert} + \frac{z_2}{\lvert z_2 \rvert} \right\rvert \leq 2 \]
we have
\[ \left( \lvert z_1 \rvert + \lvert z_2 \rvert \right) \left\lvert \frac{z_1}{\lvert z_1 \rvert} + \frac{z_2}{\lvert z_2 \rvert} \right\rvert \leq 2 \left( \lvert z_1 \rvert + \lvert z_2 \rvert \right) \]
Thus, Statement I is correct.
Statement II: Given
\[ \frac{a}{\lvert y - z \rvert} = \frac{b}{\lvert z - x \rvert} = \frac{c}{\lvert x - y \rvert} \]
let
\[ \frac{a}{\lvert y - z \rvert} = \frac{b}{\lvert z - x \rvert} = \frac{c}{\lvert x - y \rvert} = \lambda \]
Then,
\[ a^2 = \lambda \lvert y - z \rvert, \quad b^2 = \lambda \lvert z - x \rvert, \quad c^2 = \lambda \lvert x - y \rvert \]
Substituting, we get:
\[ \frac{a^2}{y - z} + \frac{b^2}{z - x} + \frac{c^2}{x - y} = \lambda \left( \frac{y - z}{y - z} + \frac{z - x}{z - x} + \frac{x - y}{x - y} \right) \]
Thus, Statement II is false.
Let \(S=\left\{ z\in\mathbb{C}:\left|\frac{z-6i}{z-2i}\right|=1 \text{ and } \left|\frac{z-8+2i}{z+2i}\right|=\frac{3}{5} \right\}.\)
Then $\sum_{z\in S}|z|^2$ is equal to
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.