The question asks which set of elements all possess a \( d^{10} \) electronic configuration. Let's evaluate each element in the given options by determining their electronic configurations and identifying those with a completely filled \( d \)-subshell.
On evaluating the individual electronic configurations for each of the elements provided in this option, all of them possess a \( d^{10} \) electronic configuration. Therefore, the correct answer consists of elements \({}^{29}\text{Cu}, {}^{30}\text{Zn}, {}^{48}\text{Cd}, {}^{47}\text{Ag}\).
Elements such as Cu, Zn, Ag, and Cd exhibit a \(d^{10}\) electronic configuration:
- \([ \text{Cu} ] = [ \text{Ar} ] 3d^{10} 4s^1\),
- \([ \text{Zn} ] = [ \text{Ar} ] 3d^{10} 4s^2\),
- \([ \text{Ag} ] = [ \text{Kr} ] 4d^{10} 5s^1\),
- \([ \text{Cd} ] = [ \text{Kr} ] 4d^{10} 5s^2\).
The Correct answer is: \( {}^{29}\text{Cu}, {}^{30}\text{Zn}, {}^{48}\text{Cd}, {}^{47}\text{Ag} \)
The figures below show:
Which of the following points in Figure 2 most accurately represents the nodal surface shown in Figure 1?
But-2-yne and hydrogen (one mole each) are separately treated with (i) Pd/C and (ii) Na/liq.NH₃ to give the products X and Y respectively.
Identify the incorrect statements.
A. X and Y are stereoisomers.
B. Dipole moment of X is zero.
C. Boiling point of X is higher than Y.
D. X and Y react with O₃/Zn + H₂O to give different products.
Choose the correct answer from the options given below :
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.