The relationship between resistance and temperature is given by:
\[ R = R_0 \left( 1 + \alpha \Delta T \right), \]
where: \begin{itemize} \item $R_0 = 50 \, \Omega$ (resistance at room temperature), $R = 62 \, \Omega$ (resistance at the higher temperature), \(\alpha = 2.4 \times 10^{-4} \degree{C}^{-1}\) (temperature coefficient), $\Delta T = T - T_0$ (change in temperature), $T_0 = 27^\circ \mathrm{C}$ (initial temperature).
Rearrange to solve for $\Delta T$:
\[ \Delta T = \frac{R - R_0}{\alpha R_0}. \]
Substitute the given values:
\[ \Delta T = \frac{62 - 50}{(2.4 \times 10^{-4}) \cdot 50}. \]
Simplify: \[ \Delta T = \frac{12}{(2.4 \times 10^{-4}) \cdot 50} = \frac{12}{0.012} = 1000^\circ \mathrm{C}. \]
The final temperature $T$ is: \[ T = T_0 + \Delta T = 27 + 1000 = 1027^\circ \mathrm{C}. \]
Match List - I with List - II.
Consider the following statements:
(A) Availability is generally conserved.
(B) Availability can neither be negative nor positive.
(C) Availability is the maximum theoretical work obtainable.
(D) Availability can be destroyed in irreversibility's.
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: