To solve this problem, we want to find the probability that \( i^{k_1} + i^{k_2} \neq 0 \) for natural numbers \( k_1 \) and \( k_2 \). This is equivalent to finding the probability that \( i^{k_1} \neq -i^{k_2} \).
1. Determine the possible values of \( i^k \):
The possible values of \( i^k \) for any natural number \( k \) are \( \{i, -1, -i, 1\} \). Specifically, \( i^k \) depends on \( k \pmod{4} \):
\( i^k = \begin{cases} 1 & \text{if } k \equiv 0 \pmod{4} \\ i & \text{if } k \equiv 1 \pmod{4} \\ -1 & \text{if } k \equiv 2 \pmod{4} \\ -i & \text{if } k \equiv 3 \pmod{4} \end{cases} \)
2. Find when \( i^{k_1} + i^{k_2} = 0 \):
We have \( i^{k_1} + i^{k_2} = 0 \) if and only if \( i^{k_1} = -i^{k_2} \). This means that \( i^{k_1} \) and \( i^{k_2} \) must be opposite values. The possible pairs of opposite values are \( (i, -i) \) and \( (1, -1) \).
3. Calculate the probability of \( i^{k_1} = -i^{k_2} \):
We want to find the probability that \( i^{k_1} \) and \( i^{k_2} \) are not opposites. Consider the possible values of \( k_1 \pmod{4} \). For each value of \( k_1 \pmod{4} \), we determine the value of \( k_2 \pmod{4} \) that makes \( i^{k_1} = -i^{k_2} \).
In each case, there is exactly one value of \( k_2 \pmod{4} \) that makes \( i^{k_1} = -i^{k_2} \). Since there are 4 possible values for \( k_2 \pmod{4} \), the probability that \( i^{k_1} = -i^{k_2} \) is \( \frac{1}{4} \).
4. Calculate the probability of \( i^{k_1} \neq -i^{k_2} \):
The probability that \( i^{k_1} \neq -i^{k_2} \) is \( 1 - \frac{1}{4} = \frac{3}{4} \).
Final Answer:
The probability that \( i^{k_1} + i^{k_2} \neq 0 \) is \( {\frac{3}{4}} \).
Let the mean and variance of 7 observations 2, 4, 10, x, 12, 14, y, where x>y, be 8 and 16 respectively. Two numbers are chosen from \(\{1, 2, 3, x-4, y, 5\}\) one after another without replacement, then the probability, that the smaller number among the two chosen numbers is less than 4, is:
If the mean and the variance of the data 
are $\mu$ and 19 respectively, then the value of $\lambda + \mu$ is
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.