The correct answer is : 42

A = required area
\(=\int\limits^{\frac{3}{2}}_0\left[(3-y)-(\frac{2y^2}{3})\right]dy-\pi(\sqrt2)^2.\frac{1}{8}\)
\(⇒\left(3y-\frac{y^2}{2}-\frac{2}{9}y^3\right)\big|^{\frac{3}{2}}_{0}-\frac{\pi}{4}\)
\(⇒3.\frac{3}{2}-\frac{9}{8}-\frac{2}{9}.\frac{27}{8}-\frac{\pi}{4}\)
\(⇒\frac{36-9-6}{8}-\frac{\pi}{4}\)
\(=\frac{21}{8}-\frac{\pi}{4}\)
\(⇒4(\pi+4A)=4(\frac{21}{2})\)
\(=42\)
Let the area of the region \( \{(x, y) : 2y \leq x^2 + 3, \, y + |x| \leq 3, \, y \geq |x - 1|\} \) be \( A \). Then \( 6A \) is equal to:
If the area of the region \[ \{(x, y) : |4 - x^2| \leq y \leq x^2, y \leq 4, x \geq 0\} \] is \( \frac{80\sqrt{2}}{\alpha - \beta} \), where \( \alpha, \beta \in \mathbb{N} \), then \( \alpha + \beta \) is equal to:
Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):

Read More: Area under the curve formula