Magnetic Force on a Moving Charge:
When a charged particle, such as an electron, moves in a magnetic field, it experiences a force given by:
\[ \vec{F} = q (\vec{v} \times \vec{B}) \]
where \(\vec{v}\) is the velocity of the particle and \(\vec{B}\) is the magnetic field.
The direction of the force is perpendicular to both \(\vec{v}\) and \(\vec{B}\).
Magnetic Field Inside a Solenoid:
Inside a long solenoid carrying current, the magnetic field \(\vec{B}\) is uniform and directed along the axis of the solenoid.
Since the electron is moving along the axis, its velocity \(\vec{v}\) is also parallel to \(\vec{B}\).
No Magnetic Force Due to Parallel \(\vec{v}\) and \(\vec{B}\):
Since \(\vec{v} \parallel \vec{B}\), the cross product \(\vec{v} \times \vec{B} = 0\).
Therefore, the magnetic force \(\vec{F} = 0\), and the electron will not experience any force due to the magnetic field.
Conclusion:
The electron will continue to move with uniform velocity along the axis of the solenoid, as there is no force acting on it to change its state of motion.
A laser beam has intensity of $4.0\times10^{14}\ \text{W/m}^2$. The amplitude of magnetic field associated with the beam is ______ T. (Take $\varepsilon_0=8.85\times10^{-12}\ \text{C}^2/\text{N m}^2$ and $c=3\times10^8\ \text{m/s}$)
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to