Let \( P(W_1) = x \).
Given \( P(W_n) = 2P(W_{n-1}) \).
Then, \( P(W_2) = 2x \), \( P(W_3) = 2^2x \), ..., \( P(W_n) = 2^{n-1}x \).
Since \( \sum_{i=1}^{120} P(W_i) = 1 \), we have
\[
x + 2x + 2^2x + \dots + 2^{119}x = 1
\]
\[
x(1 + 2 + 2^2 + \dots + 2^{119}) = 1
\]
\[
x \cdot \frac{2^{120} - 1}{2 - 1} = 1
\]
\[
x(2^{120} - 1) = 1
\]
\[
x = \frac{1}{2^{120} - 1} \tag{1}
\]
Now, let's find the rank of CDBEA.
A\_ \_ \_ \_ = \( 4! = 24 \)
B\_ \_ \_ \_ = \( 4! = 24 \)
CA\_ \_ \_ = \( 3! = 6 \)
CB\_ \_ \_ = \( 3! = 6 \)
CDA\_ \_ = \( 2! = 2 \)
CDBAE = 1
CDBEA = 1
So, the rank of CDBEA is
\[
24 + 24 + 6 + 6 + 2 + 1 = 63
\]
Thus, CDBEA is \( W_{64} \).
Therefore,
\[
P(CDBEA) = P(W_{64}) = 2^{63} \cdot P(W_1) = 2^{63} \cdot \frac{1}{2^{120} - 1}
\]
\[
P(CDBEA) = \frac{2^{63}}{2^{120} - 1}
\]
Comparing with \( P(CDBEA) = \frac{2^\alpha}{2^\beta - 1} \), we have:
\[
\alpha = 63,\quad \beta = 120
\]
\[
\alpha + \beta = 63 + 120 = 183
\]