Four students of class XII are given a problem to solve independently. Their respective chances of solving the problem are: \[ \frac{1}{2},\quad \frac{1}{3},\quad \frac{2}{3},\quad \frac{1}{5} \] Find the probability that at most one of them will solve the problem.
Let the students be \( A_1, A_2, A_3, A_4 \).
Case 1: None solves the problem
\[ P_0 = P(A_1') \cdot P(A_2') \cdot P(A_3') \cdot P(A_4') = \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{4}{5} = \frac{8}{90} = \frac{4}{45} \]
Case 2: Exactly one solves the problem
Case 2.1: Only \( A_1 \) solves
\[ P = \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{4}{5} = \frac{4}{45} \]
Case 2.2: Only \( A_2 \) solves
\[ P = \frac{1}{3} \cdot \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{4}{5} = \frac{2}{45} \]
Case 2.3: Only \( A_3 \) solves
\[ P = \frac{2}{3} \cdot \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{4}{5} = \frac{16}{45} \]
Case 2.4: Only \( A_4 \) solves
\[ P = \frac{1}{5} \cdot \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{1}{3} = \frac{2}{45} \]
Total for exactly one solves:
\[ P_1 = \frac{4}{45} + \frac{2}{45} + \frac{16}{45} + \frac{2}{45} = \frac{24}{45} \]
\[ P(\text{At most one solves}) = P_0 + P_1 = \frac{4}{45} + \frac{24}{45} = \boxed{\frac{28}{45}} \]
Show that the following lines intersect. Also, find their point of intersection:
Line 1: \[ \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} \]
Line 2: \[ \frac{x - 4}{5} = \frac{y - 1}{2} = z \]