Four students of class XII are given a problem to solve independently. Their respective chances of solving the problem are: \[ \frac{1}{2},\quad \frac{1}{3},\quad \frac{2}{3},\quad \frac{1}{5} \] Find the probability that at most one of them will solve the problem.
Let the students be \( A_1, A_2, A_3, A_4 \).
Case 1: None solves the problem
\[ P_0 = P(A_1') \cdot P(A_2') \cdot P(A_3') \cdot P(A_4') = \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{4}{5} = \frac{8}{90} = \frac{4}{45} \]
Case 2: Exactly one solves the problem
Case 2.1: Only \( A_1 \) solves
\[ P = \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{4}{5} = \frac{4}{45} \]
Case 2.2: Only \( A_2 \) solves
\[ P = \frac{1}{3} \cdot \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{4}{5} = \frac{2}{45} \]
Case 2.3: Only \( A_3 \) solves
\[ P = \frac{2}{3} \cdot \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{4}{5} = \frac{16}{45} \]
Case 2.4: Only \( A_4 \) solves
\[ P = \frac{1}{5} \cdot \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{1}{3} = \frac{2}{45} \]
Total for exactly one solves:
\[ P_1 = \frac{4}{45} + \frac{2}{45} + \frac{16}{45} + \frac{2}{45} = \frac{24}{45} \]
\[ P(\text{At most one solves}) = P_0 + P_1 = \frac{4}{45} + \frac{24}{45} = \boxed{\frac{28}{45}} \]
If the probability distribution is given by:
| X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|---|
| P(x) | 0 | k | 2k | 2k | 3k | k² | 2k² | 7k² + k |
Then find: \( P(3 < x \leq 6) \)
If \(S=\{1,2,....,50\}\), two numbers \(\alpha\) and \(\beta\) are selected at random find the probability that product is divisible by 3 :
Find the Derivative \( \frac{dy}{dx} \)
Given:\[ y = \cos(x^2) + \cos(2x) + \cos^2(x^2) + \cos(x^x) \]