For a train moving around a curve, the required banking angle θ is given by:
\[\tan \theta = \frac{v^2}{Rg}\]
where \(v = 12 \, \text{m/s}\), \(R = 400 \, \text{m}\), and \(g = 10 \, \text{m/s}^2\).
Substitute the values:
\[\tan \theta = \frac{12^2}{10 \times 400} = \frac{144}{4000} = \frac{h}{1.5}\]
where \(h\) is the height by which the outer rail should be raised over the inner rail, and the distance between the rails is 1.5 m.
Solving for \(h\):
\[h = \frac{144 \times 1.5}{4000} = 5.4 \, \text{cm}\]
Thus, the required height is 5.4 cm.
A circular ring and a solid sphere having same radius roll down on an inclined plane from rest without slipping. The ratio of their velocities when reached at the bottom of the plane is $\sqrt{\frac{\mathrm{x}}{5}}$ where $\mathrm{x}=$ _______.
If $\overrightarrow{\mathrm{L}}$ and $\overrightarrow{\mathrm{P}}$ represent the angular momentum and linear momentum respectively of a particle of mass ' $m$ ' having position vector $\overrightarrow{\mathrm{r}}=\mathrm{a}(\hat{\mathrm{i}} \cos \omega \mathrm{t}+\hat{\mathrm{j}} \sin \omega \mathrm{t})$. The direction of force is
Which of the following are correct expression for torque acting on a body?
A. $\ddot{\tau}=\ddot{\mathrm{r}} \times \ddot{\mathrm{L}}$
B. $\ddot{\tau}=\frac{\mathrm{d}}{\mathrm{dt}}(\ddot{\mathrm{r}} \times \ddot{\mathrm{p}})$
C. $\ddot{\tau}=\ddot{\mathrm{r}} \times \frac{\mathrm{d} \dot{\mathrm{p}}}{\mathrm{dt}}$
D. $\ddot{\tau}=\mathrm{I} \dot{\alpha}$
E. $\ddot{\tau}=\ddot{\mathrm{r}} \times \ddot{\mathrm{F}}$
( $\ddot{r}=$ position vector; $\dot{\mathrm{p}}=$ linear momentum; $\ddot{\mathrm{L}}=$ angular momentum; $\ddot{\alpha}=$ angular acceleration; $\mathrm{I}=$ moment of inertia; $\ddot{\mathrm{F}}=$ force; $\mathrm{t}=$ time $)$
Choose the correct answer from the options given below:
Match List-I with List-II: List-I