Flux linkage for inner loop:
\[ \phi = B_{\text{center}} \cdot \ell^2 \] \[ = 4 \times \frac{\mu_0 i}{4\pi} \left( \sin 45^\circ + \sin 45^\circ \right) \ell^2 \] \[ \phi = \frac{2\sqrt{2} \mu_0 i \ell^2}{\pi L} \]Mutual inductance:
\[ M = \frac{\phi}{i} = \frac{2\sqrt{2} \mu_0 \ell^2}{\pi L} = \frac{2\sqrt{2} \mu_0}{\pi} \]Calculating:
\[ M = \frac{2\sqrt{2} \times 4\pi}{\pi} \times 10^{-7} \] \[ = 8\sqrt{2} \times 10^{-7} \, \text{H} \] \[ = \sqrt{128} \times 10^{-7} \, \text{H} \]Thus:
\[ x = 128 \]The number of 6-letter words, with or without meaning, that can be formed using the letters of the word MATHS such that any letter that appears in the word must appear at least twice, is $ 4 \_\_\_\_\_$.
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]
Let $L_1: \frac{x-1}{1} = \frac{y-2}{-1} = \frac{z-1}{2}$ and $L_2: \frac{x+1}{-1} = \frac{y-2}{2} = \frac{z}{1}$ be two lines. Let $L_3$ be a line passing through the point $(\alpha, \beta, \gamma)$ and be perpendicular to both $L_1$ and $L_2$. If $L_3$ intersects $L_1$, then $\left| 5\alpha - 11\beta - 8\gamma \right|$ equals:
Let $\left\lfloor t \right\rfloor$ be the greatest integer less than or equal to $t$. Then the least value of $p \in \mathbb{N}$ for which
\[ \lim_{x \to 0^+} \left( x \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
is equal to __________.