Step 1: Magnetic Field (MF) due to the larger square loop at the center
The magnetic field \( B \) at the center of a square loop is given by:
\[ B = \frac{4\mu_0 I}{4 \pi \left(\frac{L}{2}\right)} \left[ \sin 45^\circ + \sin 45^\circ \right] \]
Simplifying the expression, we get:
\[ B = \frac{2 \sqrt{2} \mu_0 I}{\pi L}. \]
Step 2: Magnetic Flux (\( \phi \)) in the smaller coil
The magnetic flux \( \phi \) in the smaller coil is the product of the magnetic field \( B \) and the area of the coil \( A = L^2 \), which gives:
\[ \phi = \frac{2 \sqrt{2} \mu_0 I}{\pi L} \cdot L^2. \]
Simplifying, we have:
\[ \phi = 2 \sqrt{2} \frac{\mu_0 I}{\pi} L. \]
Step 3: Mutual Inductance (M)
The mutual inductance \( M \) is given by the ratio of flux \( \phi \) to the current \( I \):
\[ M = \frac{\phi}{I} = 2 \sqrt{2} \frac{\mu_0 I^2}{\pi L}. \]
Substituting the values, we get:
\[ M = 2 \sqrt{2} \times 4 \times 10^{-7} \, \text{H} = \sqrt{128 \times 10^{-7}} \, \text{H}. \]
Therefore, the value of \( x \) is:
\[ x = 128. \]
Flux linkage for inner loop:
\[ \phi = B_{\text{center}} \cdot \ell^2 \] \[ = 4 \times \frac{\mu_0 i}{4\pi} \left( \sin 45^\circ + \sin 45^\circ \right) \ell^2 \] \[ \phi = \frac{2\sqrt{2} \mu_0 i \ell^2}{\pi L} \]Mutual inductance:
\[ M = \frac{\phi}{i} = \frac{2\sqrt{2} \mu_0 \ell^2}{\pi L} = \frac{2\sqrt{2} \mu_0}{\pi} \]Calculating:
\[ M = \frac{2\sqrt{2} \times 4\pi}{\pi} \times 10^{-7} \] \[ = 8\sqrt{2} \times 10^{-7} \, \text{H} \] \[ = \sqrt{128} \times 10^{-7} \, \text{H} \]Thus:
\[ x = 128 \]
Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.