Flux linkage for inner loop:
\[ \phi = B_{\text{center}} \cdot \ell^2 \] \[ = 4 \times \frac{\mu_0 i}{4\pi} \left( \sin 45^\circ + \sin 45^\circ \right) \ell^2 \] \[ \phi = \frac{2\sqrt{2} \mu_0 i \ell^2}{\pi L} \]Mutual inductance:
\[ M = \frac{\phi}{i} = \frac{2\sqrt{2} \mu_0 \ell^2}{\pi L} = \frac{2\sqrt{2} \mu_0}{\pi} \]Calculating:
\[ M = \frac{2\sqrt{2} \times 4\pi}{\pi} \times 10^{-7} \] \[ = 8\sqrt{2} \times 10^{-7} \, \text{H} \] \[ = \sqrt{128} \times 10^{-7} \, \text{H} \]Thus:
\[ x = 128 \]Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: