Flux linkage for inner loop:
\[ \phi = B_{\text{center}} \cdot \ell^2 \] \[ = 4 \times \frac{\mu_0 i}{4\pi} \left( \sin 45^\circ + \sin 45^\circ \right) \ell^2 \] \[ \phi = \frac{2\sqrt{2} \mu_0 i \ell^2}{\pi L} \]Mutual inductance:
\[ M = \frac{\phi}{i} = \frac{2\sqrt{2} \mu_0 \ell^2}{\pi L} = \frac{2\sqrt{2} \mu_0}{\pi} \]Calculating:
\[ M = \frac{2\sqrt{2} \times 4\pi}{\pi} \times 10^{-7} \] \[ = 8\sqrt{2} \times 10^{-7} \, \text{H} \] \[ = \sqrt{128} \times 10^{-7} \, \text{H} \]Thus:
\[ x = 128 \]Statement-1: \( \text{ClF}_3 \) has 3 possible structures.
Statement-2: \( \text{III} \) is the most stable structure due to least lone pair-bond pair (lp-bp) repulsion.
Which of the following options is correct?
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: