Question:

A small mirror of mass $m$ is suspended by a massless thread of length $l$. Then the small angle through which the thread will be deflected when a short pulse of laser of energy $E$ falls normal on the mirror ( $c=$ speed of light in vacuum and $g=$ acceleration due to gravity).

Show Hint

Use the work-energy theorem to find the deflection angle.
Updated On: Apr 25, 2025
  • $\theta=\frac{3 \mathrm{E}}{4 \mathrm{mc} \sqrt{g l}}$
  • $\theta=\frac{\mathrm{E}}{\mathrm{mc} \sqrt{\mathrm{g} l}}$
  • $\theta=\frac{\mathrm{E}}{2 \mathrm{mc} \sqrt{\mathrm{gl}}}$
  • $\theta=\frac{2 \mathrm{E}}{\mathrm{mc} \sqrt{\mathrm{gl}}}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

1. Force due to the laser beam: \[ F = \frac{2P}{c} = \frac{2}{c} \frac{dE}{dt} \]
2. Change in momentum of the mirror: \[ m(V - 0) = \int F dt = \frac{2}{c} \int dE = \frac{2E}{c} \]
3. Using work-energy theorem: \[ W_g = \Delta K \] \[ -\frac{mg l (1 - \cos \theta)}{l} = \frac{1}{2} m V^2 \] \[ \frac{g l (1 - \cos \theta)}{l} = \frac{1}{2} \left( \frac{4E^2}{m^2 c^2} \right) \] \[ \frac{g l \theta^2}{2} = \frac{2E^2}{m^2 c^2} \] \[ \theta = \frac{2E}{mc \sqrt{gl}} \] Therefore, the correct answer is (4) $\theta=\frac{2 \mathrm{E}}{\mathrm{mc} \sqrt{\mathrm{gl}}}$.
Was this answer helpful?
0
0

Top Questions on Optics

View More Questions