The average emf induced in the loop is given by:
\[ \text{Average emf} = -\frac{\Delta \Phi}{\Delta t} = -\frac{0 - (4 \times (2.5 \times 2) \cos 60^\circ)}{10} \]
Calculating the flux change:
\[ \Delta \Phi = 4 \times (2.5 \times 2) \times \frac{1}{2} = 10 \text{ Wb} \]
Then,
\[ \text{Average emf} = -\frac{-10}{10} = +1 \text{ V} \]
Conductor wire ABCDE with each arm 10 cm in length is placed in magnetic field of $\frac{1}{\sqrt{2}}$ Tesla, perpendicular to its plane. When conductor is pulled towards right with constant velocity of $10 \mathrm{~cm} / \mathrm{s}$, induced emf between points A and E is _______ mV.}
Match List-I with List-II: List-I