The average emf induced in the loop is given by:
\[ \text{Average emf} = -\frac{\Delta \Phi}{\Delta t} = -\frac{0 - (4 \times (2.5 \times 2) \cos 60^\circ)}{10} \]
Calculating the flux change:
\[ \Delta \Phi = 4 \times (2.5 \times 2) \times \frac{1}{2} = 10 \text{ Wb} \]
Then,
\[ \text{Average emf} = -\frac{-10}{10} = +1 \text{ V} \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: