A radioactive element \({}^{242}_{92}X\) emits two \(\alpha\)-particles, one electron, and two positrons. The product nucleus is represented by \({}^{234}_{P}Y.\) The value of \(P\) is _______.
For radioactive decay:
\[ \text{Atomic number} = 92 - 2 \times 2 = 88, \quad \text{Mass number} = 242 - 2 \times 4 = 234. \]
\[ \text{Atomic number} = 88 + 1 = 89. \]
\[ \text{Atomic number} = 89 - 2 = 87. \]
Final Answer: 87
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: