Given:
Decay Formula:
\[ N = N_0 \times \left( \frac{1}{2} \right)^{t/T} \]
Substituting values:
\[ \frac{1}{5} = \left( \frac{1}{2} \right)^{t/3} \]
Taking natural logarithm on both sides:
\[ \ln \left( \frac{1}{5} \right) = \frac{t}{3} \ln \left( \frac{1}{2} \right) \]
Using values:
\[ \ln(1/5) = -\ln 5 \approx -1.609 \]
\[ \ln(1/2) = -\ln 2 \approx -0.693 \]
Solving for \( t \):
\[ t = \frac{1.609 \times 3}{0.693} \]
\[ t \approx \frac{4.827}{0.693} \approx 7 \text{ years} \]
Answer: The time required is 7 years (Option A).