
Write the system of equations in matrix form:
\[ \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 3 & 4\lambda \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4\mu \\ 10\mu \\ \mu^2 + 15 \end{bmatrix} \]
Let the coefficient matrix be \( A \):
\[ A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 3 & 4\lambda \end{bmatrix} \]
Calculate the determinant of \( A \):
\[ \text{det}(A) = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 3 & 4\lambda \end{vmatrix} = (2\lambda - 1)^2 \]
For unique solutions, \( \text{det}(A) \neq 0 \) or \( \lambda \neq \frac{1}{2} \).
For infinite solutions, \( \lambda = \frac{1}{2} \), and consistency depends on the rank of the augmented matrix with specific values of \( \mu \).
The system is inconsistent if \( \lambda = \frac{1}{2} \) and \( \mu \neq 1 \)
If the system of equations: $$ \begin{aligned} 3x + y + \beta z &= 3 \\2x + \alpha y + z &= 2 \\x + 2y + z &= 4 \end{aligned} $$ has infinitely many solutions, then the value of \( 22\beta - 9\alpha \) is:
The molar conductance of an infinitely dilute solution of ammonium chloride was found to be 185 S cm$^{-1}$ mol$^{-1}$ and the ionic conductance of hydroxyl and chloride ions are 170 and 70 S cm$^{-1}$ mol$^{-1}$, respectively. If molar conductance of 0.02 M solution of ammonium hydroxide is 85.5 S cm$^{-1}$ mol$^{-1}$, its degree of dissociation is given by x $\times$ 10$^{-1}$. The value of x is ______. (Nearest integer)
x mg of Mg(OH)$_2$ (molar mass = 58) is required to be dissolved in 1.0 L of water to produce a pH of 10.0 at 298 K. The value of x is ____ mg. (Nearest integer) (Given: Mg(OH)$_2$ is assumed to dissociate completely in H$_2$O)
Sea water, which can be considered as a 6 molar (6 M) solution of NaCl, has a density of 2 g mL$^{-1}$. The concentration of dissolved oxygen (O$_2$) in sea water is 5.8 ppm. Then the concentration of dissolved oxygen (O$_2$) in sea water, in x $\times$ 10$^{-4}$ m. x = _______. (Nearest integer)
Given: Molar mass of NaCl is 58.5 g mol$^{-1}$Molar mass of O$_2$ is 32 g mol$^{-1}$.