Write the system of equations in matrix form:
\[ \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 3 & 4\lambda \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4\mu \\ 10\mu \\ \mu^2 + 15 \end{bmatrix} \]
Let the coefficient matrix be \( A \):
\[ A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 3 & 4\lambda \end{bmatrix} \]
Calculate the determinant of \( A \):
\[ \text{det}(A) = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 3 & 4\lambda \end{vmatrix} = (2\lambda - 1)^2 \]
For unique solutions, \( \text{det}(A) \neq 0 \) or \( \lambda \neq \frac{1}{2} \).
For infinite solutions, \( \lambda = \frac{1}{2} \), and consistency depends on the rank of the augmented matrix with specific values of \( \mu \).
The system is inconsistent if \( \lambda = \frac{1}{2} \) and \( \mu \neq 1 \)
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: