If a radioactive element with a half-life of 30 min undergoes beta decay. The fraction of the radioactive element that remains undecayed after 90 min is:
For radioactive decay:
1. Number of Half-Lives: - Time elapsed: t = 90 min. - Half-life: T1/2 = 30 min. - Number of half-lives:
\[n = \frac{t}{T_{1/2}} = \frac{90}{30} = 3.\]
2. Remaining Fraction: - Fraction remaining after n half-lives:
\[\frac{N}{N_0} = \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^3 = \frac{1}{8}.\]
Final Answer:
\(\boxed{\frac{1}{8}}\)
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to:
