If a radioactive element with a half-life of 30 min undergoes beta decay. The fraction of the radioactive element that remains undecayed after 90 min is:
For radioactive decay:
1. Number of Half-Lives: - Time elapsed: t = 90 min. - Half-life: T1/2 = 30 min. - Number of half-lives:
\[n = \frac{t}{T_{1/2}} = \frac{90}{30} = 3.\]
2. Remaining Fraction: - Fraction remaining after n half-lives:
\[\frac{N}{N_0} = \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^3 = \frac{1}{8}.\]
Final Answer:
\(\boxed{\frac{1}{8}}\)
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: