If a radioactive element with a half-life of 30 min undergoes beta decay. The fraction of the radioactive element that remains undecayed after 90 min is:
For radioactive decay:
1. Number of Half-Lives: - Time elapsed: t = 90 min. - Half-life: T1/2 = 30 min. - Number of half-lives:
\[n = \frac{t}{T_{1/2}} = \frac{90}{30} = 3.\]
2. Remaining Fraction: - Fraction remaining after n half-lives:
\[\frac{N}{N_0} = \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^3 = \frac{1}{8}.\]
Final Answer:
\(\boxed{\frac{1}{8}}\)
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)