The correct answer is (C) : mk2r2t
\(a_r = k²rt² = \frac{v²}{r}\)
\(⇒ v² = k²r²t² \) or \( v = krt\)
and
\(\frac{d |v|}{dt} = kr\)
\(⇒ a_t = kr\)
\(⇒ | \stackrel{→}{F} . \stackrel{→}{v} | = (mkr) ( krt)\)
\(= mk^2r^2t \)= power delivered
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Read More: Work and Energy