The correct answer is (C) : mk2r2t
\(a_r = k²rt² = \frac{v²}{r}\)
\(⇒ v² = k²r²t² \) or \( v = krt\)
and
\(\frac{d |v|}{dt} = kr\)
\(⇒ a_t = kr\)
\(⇒ | \stackrel{→}{F} . \stackrel{→}{v} | = (mkr) ( krt)\)
\(= mk^2r^2t \)= power delivered
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is:
Read More: Work and Energy