To find the work done by the force $ F(x) = 6x^2 $ as the particle moves from $ x = 1 \, \text{m} $ to $ x = 2 \, \text{m} $, we use the work integral formula:
\[ W = \int_{x_1}^{x_2} F(x) \, dx \] Substituting the given values, we have: \[ W = \int_{1}^{2} 6x^2 \, dx \] Evaluate the integral: \[ W = 6 \int_{1}^{2} x^2 \, dx \] We know that the integral of $ x^n $ is $ \frac{x^{n+1}}{n+1} $. Applying this, we get: \[ \int x^2 \, dx = \frac{x^3}{3} \] Therefore: \[ W = 6 \left[ \frac{x^3}{3} \right]_{1}^{2} \] Simplifying: \[ W = 6 \left( \frac{2^3}{3} - \frac{1^3}{3} \right) \] Calculate: \[ W = 6 \left( \frac{8}{3} - \frac{1}{3} \right) = 6 \left( \frac{7}{3} \right) = 2 \times 7 = 14 \, \text{J} \] Thus, the work done by the force is 14 J.