\[x^2 = 1 + t^2\]
Differentiating with respect to \(t\):
\[2x \frac{dx}{dt} = 2t\]
\[x \cdot v = t \quad \text{(where \(v = \frac{dx}{dt}\))}\]
Differentiating again:
\[x \frac{dv}{dt} + v \frac{dx}{dt} = 1\]
\[x \cdot a + v^2 = 1 \quad \text{(where \(a = \frac{dv}{dt}\))}\]
Simplify:
\[a = \frac{1 - v^2}{x} = \frac{1 - t^2 / x^2}{x}\]
\[a = \frac{1}{x^3} = x^{-3}\]
A string of length \( L \) is fixed at one end and carries a mass of \( M \) at the other end. The mass makes \( \frac{3}{\pi} \) rotations per second about the vertical axis passing through the end of the string as shown. The tension in the string is ________________ ML.
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).