\[x^2 = 1 + t^2\]
Differentiating with respect to \(t\):
\[2x \frac{dx}{dt} = 2t\]
\[x \cdot v = t \quad \text{(where \(v = \frac{dx}{dt}\))}\]
Differentiating again:
\[x \frac{dv}{dt} + v \frac{dx}{dt} = 1\]
\[x \cdot a + v^2 = 1 \quad \text{(where \(a = \frac{dv}{dt}\))}\]
Simplify:
\[a = \frac{1 - v^2}{x} = \frac{1 - t^2 / x^2}{x}\]
\[a = \frac{1}{x^3} = x^{-3}\]
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32