\[x^2 = 1 + t^2\]
Differentiating with respect to \(t\):
\[2x \frac{dx}{dt} = 2t\]
\[x \cdot v = t \quad \text{(where \(v = \frac{dx}{dt}\))}\]
Differentiating again:
\[x \frac{dv}{dt} + v \frac{dx}{dt} = 1\]
\[x \cdot a + v^2 = 1 \quad \text{(where \(a = \frac{dv}{dt}\))}\]
Simplify:
\[a = \frac{1 - v^2}{x} = \frac{1 - t^2 / x^2}{x}\]
\[a = \frac{1}{x^3} = x^{-3}\]
A string of length \( L \) is fixed at one end and carries a mass of \( M \) at the other end. The mass makes \( \frac{3}{\pi} \) rotations per second about the vertical axis passing through the end of the string as shown. The tension in the string is ________________ ML.
20 mL of sodium iodide solution gave 4.74 g silver iodide when treated with excess of silver nitrate solution. The molarity of the sodium iodide solution is _____ M. (Nearest Integer value) (Given : Na = 23, I = 127, Ag = 108, N = 14, O = 16 g mol$^{-1}$)