For a ring rotating about its diameter: \[ I_{\text{ring}} = \frac{MR^2}{2} \]
For a solid disc rotating about its diameter: \[ I_{\text{disc}} = \frac{MR^2}{4} \]
According to the problem, the moment of inertia of the disc is 2.5 times the moment of inertia of the ring: \[ I_{\text{disc}} = 2.5 I_{\text{ring}} \]
Substituting the values: \[ \frac{MR^2}{4} = 2.5 \times \frac{MR^2}{2} \]
Solving this will confirm the relationship.
For a solid sphere rotating about its diameter: \[ I_{\text{sphere}} = \frac{2MR^2}{5} \]
The moment of inertia of the solid sphere is \( n \) times the moment of inertia of the ring. \[ I_{\text{sphere}} = n I_{\text{ring}} \]
Substituting the values: \[ \frac{2MR^2}{5} = n \times \frac{MR^2}{2} \] \[ n = \frac{2}{5} \div \frac{1}{2} = \frac{2}{5} \times \frac{2}{1} = \frac{4}{5} \]
Therefore, \[ \boldsymbol{n = \frac{4}{5}} \]

Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: