For a ring rotating about its diameter: \[ I_{\text{ring}} = \frac{MR^2}{2} \]
For a solid disc rotating about its diameter: \[ I_{\text{disc}} = \frac{MR^2}{4} \]
According to the problem, the moment of inertia of the disc is 2.5 times the moment of inertia of the ring: \[ I_{\text{disc}} = 2.5 I_{\text{ring}} \]
Substituting the values: \[ \frac{MR^2}{4} = 2.5 \times \frac{MR^2}{2} \]
Solving this will confirm the relationship.
For a solid sphere rotating about its diameter: \[ I_{\text{sphere}} = \frac{2MR^2}{5} \]
The moment of inertia of the solid sphere is \( n \) times the moment of inertia of the ring. \[ I_{\text{sphere}} = n I_{\text{ring}} \]
Substituting the values: \[ \frac{2MR^2}{5} = n \times \frac{MR^2}{2} \] \[ n = \frac{2}{5} \div \frac{1}{2} = \frac{2}{5} \times \frac{2}{1} = \frac{4}{5} \]
Therefore, \[ \boldsymbol{n = \frac{4}{5}} \]
A cylindrical tube \(AB\) of length \(l\), closed at both ends, contains an ideal gas of \(1\) mol having molecular weight \(M\). The tube is rotated in a horizontal plane with constant angular velocity \(\omega\) about an axis perpendicular to \(AB\) and passing through the edge at end \(A\), as shown in the figure. If \(P_A\) and \(P_B\) are the pressures at \(A\) and \(B\) respectively, then (consider the temperature to be same at all points in the tube) 
As shown in the figure, radius of gyration about the axis shown in \(\sqrt{n}\) cm for a solid sphere. Find 'n'. 
When rod becomes horizontal find its angular velocity. It is pivoted at point A as shown. 

A string of length \( L \) is fixed at one end and carries a mass of \( M \) at the other end. The mass makes \( \frac{3}{\pi} \) rotations per second about the vertical axis passing through the end of the string as shown. The tension in the string is ________________ ML.
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 