\( \left(\frac{2}{3} a, \frac{b}{2} \right) \)
Let the rectangular plate be defined by $ 0 \le x \le a $ and $ 0 \le y \le b $.
The mass per unit area is given as:
$$ \sigma = \frac{\sigma_0 x}{ab} $$
To find the center of mass $ (x_{cm}, y_{cm}) $, we first calculate the total mass $ M $, then use the formulas:
$$ x_{cm} = \frac{1}{M} \iint x \sigma \,dA, \quad y_{cm} = \frac{1}{M} \iint y \sigma \,dA $$
Step 1: Total Mass $ M $
$$ M = \iint \sigma \,dA = \int_0^a \int_0^b \frac{\sigma_0 x}{ab} \,dy\,dx = \frac{\sigma_0}{ab} \int_0^a x \left( \int_0^b dy \right) dx $$
$$= \frac{\sigma_0}{ab} \int_0^a x \cdot b \,dx = \frac{\sigma_0}{a} \int_0^a x \,dx = \frac{\sigma_0}{a} \cdot \frac{a^2}{2} = \frac{\sigma_0 a}{2} $$
Step 2: $ x_{cm} $
$$ x_{cm} = \frac{1}{M} \int_0^a \int_0^b x \cdot \sigma \,dy\,dx = \frac{1}{\frac{\sigma_0 a}{2}} \int_0^a \int_0^b x \cdot \frac{\sigma_0 x}{ab} \,dy\,dx = \frac{2}{\sigma_0 a} \cdot \frac{\sigma_0}{ab} \int_0^a x^2 \cdot b \,dx $$ $$ = \frac{2}{a^2} \int_0^a x^2 \,dx = \frac{2}{a^2} \cdot \frac{a^3}{3} = \frac{2a}{3} $$
Step 3: $ y_{cm} $
$$ y_{cm} = \frac{1}{M} \int_0^a \int_0^b y \cdot \sigma \,dy\,dx = \frac{1}{\frac{\sigma_0 a}{2}} \int_0^a \int_0^b y \cdot \frac{\sigma_0 x}{ab} \,dy\,dx $$
$$= \frac{2}{\sigma_0 a} \cdot \frac{\sigma_0}{ab} \int_0^a x \left( \int_0^b y \,dy \right) dx $$ $$ = \frac{2}{a^2 b} \int_0^a x \cdot \frac{b^2}{2} \,dx = \frac{b}{a^2} \int_0^a x \,dx = \frac{b}{a^2} \cdot \frac{a^2}{2} = \frac{b}{2} $$
Final Answer:
The coordinates of the center of mass are: $ \left(\frac{2}{3}a, \frac{b}{2}\right) $
A string of length \( L \) is fixed at one end and carries a mass of \( M \) at the other end. The mass makes \( \frac{3}{\pi} \) rotations per second about the vertical axis passing through the end of the string as shown. The tension in the string is ________________ ML.