
\( \left(\frac{2}{3} a, \frac{b}{2} \right) \)
Let the rectangular plate be defined by $ 0 \le x \le a $ and $ 0 \le y \le b $.
The mass per unit area is given as:
$$ \sigma = \frac{\sigma_0 x}{ab} $$
To find the center of mass $ (x_{cm}, y_{cm}) $, we first calculate the total mass $ M $, then use the formulas:
$$ x_{cm} = \frac{1}{M} \iint x \sigma \,dA, \quad y_{cm} = \frac{1}{M} \iint y \sigma \,dA $$
Step 1: Total Mass $ M $
$$ M = \iint \sigma \,dA = \int_0^a \int_0^b \frac{\sigma_0 x}{ab} \,dy\,dx = \frac{\sigma_0}{ab} \int_0^a x \left( \int_0^b dy \right) dx $$
$$= \frac{\sigma_0}{ab} \int_0^a x \cdot b \,dx = \frac{\sigma_0}{a} \int_0^a x \,dx = \frac{\sigma_0}{a} \cdot \frac{a^2}{2} = \frac{\sigma_0 a}{2} $$
Step 2: $ x_{cm} $
$$ x_{cm} = \frac{1}{M} \int_0^a \int_0^b x \cdot \sigma \,dy\,dx = \frac{1}{\frac{\sigma_0 a}{2}} \int_0^a \int_0^b x \cdot \frac{\sigma_0 x}{ab} \,dy\,dx = \frac{2}{\sigma_0 a} \cdot \frac{\sigma_0}{ab} \int_0^a x^2 \cdot b \,dx $$ $$ = \frac{2}{a^2} \int_0^a x^2 \,dx = \frac{2}{a^2} \cdot \frac{a^3}{3} = \frac{2a}{3} $$
Step 3: $ y_{cm} $
$$ y_{cm} = \frac{1}{M} \int_0^a \int_0^b y \cdot \sigma \,dy\,dx = \frac{1}{\frac{\sigma_0 a}{2}} \int_0^a \int_0^b y \cdot \frac{\sigma_0 x}{ab} \,dy\,dx $$
$$= \frac{2}{\sigma_0 a} \cdot \frac{\sigma_0}{ab} \int_0^a x \left( \int_0^b y \,dy \right) dx $$ $$ = \frac{2}{a^2 b} \int_0^a x \cdot \frac{b^2}{2} \,dx = \frac{b}{a^2} \int_0^a x \,dx = \frac{b}{a^2} \cdot \frac{a^2}{2} = \frac{b}{2} $$
Final Answer:
The coordinates of the center of mass are: $ \left(\frac{2}{3}a, \frac{b}{2}\right) $
A cylindrical tube \(AB\) of length \(l\), closed at both ends, contains an ideal gas of \(1\) mol having molecular weight \(M\). The tube is rotated in a horizontal plane with constant angular velocity \(\omega\) about an axis perpendicular to \(AB\) and passing through the edge at end \(A\), as shown in the figure. If \(P_A\) and \(P_B\) are the pressures at \(A\) and \(B\) respectively, then (consider the temperature to be same at all points in the tube) 
As shown in the figure, radius of gyration about the axis shown in \(\sqrt{n}\) cm for a solid sphere. Find 'n'. 
When rod becomes horizontal find its angular velocity. It is pivoted at point A as shown. 
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 