- The electric field inside a uniformly charged spherical shell is 0 (Coulomb’s Law), hence \( {(A)-(III)} \).
- The electric field due to a uniformly charged infinite plane sheet is \( \frac{\sigma}{2\epsilon_0} \), hence \( {(B)-(II)} \).
- The electric field outside a uniformly charged spherical shell behaves like that of a point charge and is \( \frac{\sigma}{\epsilon_0 r^2} \), hence \( {(C)-(IV)} \).
- The electric field between two oppositely charged infinite plane sheets is \( \frac{\sigma}{\epsilon_0} \), hence \( {(D)-(I)} \). Thus, the correct answer is \( {(1)} \).
The increase in pressure required to decrease the volume of a water sample by 0.2percentage is \( P \times 10^5 \, \text{Nm}^{-2} \). Bulk modulus of water is \( 2.15 \times 10^9 \, \text{Nm}^{-2} \). The value of \( P \) is ………..
A string of length \( L \) is fixed at one end and carries a mass of \( M \) at the other end. The mass makes \( \frac{3}{\pi} \) rotations per second about the vertical axis passing through the end of the string as shown. The tension in the string is \_\_\_\_ ML.
The maximum speed of a boat in still water is 27 km/h. Now this boat is moving downstream in a river flowing at 9 km/h. A man in the boat throws a ball vertically upwards with speed of 10 m/s. Range of the ball as observed by an observer at rest on the river bank is _________ cm. (Take \( g = 10 \, {m/s}^2 \)).
A container of fixed volume contains a gas at 27°C. To double the pressure of the gas, the temperature of the gas should be raised to …. C.