For the first minima in a single-slit diffraction pattern:
\(a \sin \theta = \lambda\)
Given:
- \( a = 0.001 \, \text{mm} = 1 \times 10^{-6} \, \text{m} \),
- \( \lambda = 5000 \, \text{Å} = 5000 \times 10^{-10} \, \text{m} \).
Substituting:
\(\sin \theta = \frac{\lambda}{a} = \frac{5000 \times 10^{-10}}{1 \times 10^{-6}} = 0.5\)
\(\theta = \sin^{-1}(0.5) = 30^\circ\)
The Correct answer is: 30
Match List-I with List-II for the index of refraction for yellow light of sodium (589 nm)
LIST-I (Materials) | LIST-II (Refractive Indices) | ||
---|---|---|---|
A. | Ice | I. | 1.309 |
B. | Rock salt (NaCl) | II. | 1.460 |
C. | CCl₄ | III. | 1.544 |
D. | Diamond | IV. | 2.417 |
Choose the correct answer from the options given below:
Match the LIST-I with LIST-II
LIST-I | LIST-II | ||
---|---|---|---|
A. | Compton Effect | IV. | Scattering |
B. | Colors in thin film | II. | Interference |
C. | Double Refraction | III. | Polarization |
D. | Bragg's Equation | I. | Diffraction |
Choose the correct answer from the options given below:
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: